996 resultados para Statistical Convergence


Relevância:

100.00% 100.00%

Publicador:

Resumo:

When Recurrent Neural Networks (RNN) are going to be used as Pattern Recognition systems, the problem to be considered is how to impose prescribed prototype vectors ξ^1,ξ^2,...,ξ^p as fixed points. The synaptic matrix W should be interpreted as a sort of sign correlation matrix of the prototypes, In the classical approach. The weak point in this approach, comes from the fact that it does not have the appropriate tools to deal efficiently with the correlation between the state vectors and the prototype vectors The capacity of the net is very poor because one can only know if one given vector is adequately correlated with the prototypes or not and we are not able to know what its exact correlation degree. The interest of our approach lies precisely in the fact that it provides these tools. In this paper, a geometrical vision of the dynamic of states is explained. A fixed point is viewed as a point in the Euclidean plane R2. The retrieving procedure is analyzed trough statistical frequency distribution of the prototypes. The capacity of the net is improved and the spurious states are reduced. In order to clarify and corroborate the theoretical results, together with the formal theory, an application is presented

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 41A25, 41A36, 40G15.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 41A25, 41A36.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates a class of self-adjoint compact operators in Hilbert spaces related to their truncated versions with finite-dimensional ranges. The comparisons are established in terms of worst-case norm errors of the composite operators generated from iterated computations. Some boundedness properties of the worst-case norms of the errors in their respective fixed points in which they exist are also given. The iterated sequences are expanded in separable Hilbert spaces through the use of numerable orthonormal bases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Accurate knowledge of traffic demands in a communication network enables or enhances a variety of traffic engineering and network management tasks of paramount importance for operational networks. Directly measuring a complete set of these demands is prohibitively expensive because of the huge amounts of data that must be collected and the performance impact that such measurements would impose on the regular behavior of the network. As a consequence, we must rely on statistical techniques to produce estimates of actual traffic demands from partial information. The performance of such techniques is however limited due to their reliance on limited information and the high amount of computations they incur, which limits their convergence behavior. In this paper we study strategies to improve the convergence of a powerful statistical technique based on an Expectation-Maximization iterative algorithm. First we analyze modeling approaches to generating starting points. We call these starting points informed priors since they are obtained using actual network information such as packet traces and SNMP link counts. Second we provide a very fast variant of the EM algorithm which extends its computation range, increasing its accuracy and decreasing its dependence on the quality of the starting point. Finally, we study the convergence characteristics of our EM algorithm and compare it against a recently proposed Weighted Least Squares approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of Mahalanobis squared distance–based novelty detection in statistical damage identification has become increasingly popular in recent years. The merit of the Mahalanobis squared distance–based method is that it is simple and requires low computational effort to enable the use of a higher dimensional damage-sensitive feature, which is generally more sensitive to structural changes. Mahalanobis squared distance–based damage identification is also believed to be one of the most suitable methods for modern sensing systems such as wireless sensors. Although possessing such advantages, this method is rather strict with the input requirement as it assumes the training data to be multivariate normal, which is not always available particularly at an early monitoring stage. As a consequence, it may result in an ill-conditioned training model with erroneous novelty detection and damage identification outcomes. To date, there appears to be no study on how to systematically cope with such practical issues especially in the context of a statistical damage identification problem. To address this need, this article proposes a controlled data generation scheme, which is based upon the Monte Carlo simulation methodology with the addition of several controlling and evaluation tools to assess the condition of output data. By evaluating the convergence of the data condition indices, the proposed scheme is able to determine the optimal setups for the data generation process and subsequently avoid unnecessarily excessive data. The efficacy of this scheme is demonstrated via applications to a benchmark structure data in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we consider a two-sided space-fractional diffusion equation with variable coefficients on a finite domain. Firstly, based on the nodal basis functions, we present a new fractional finite volume method for the two-sided space-fractional diffusion equation and derive the implicit scheme and solve it in matrix form. Secondly, we prove the stability and convergence of the implicit fractional finite volume method and conclude that the method is unconditionally stable and convergent. Finally, some numerical examples are given to show the effectiveness of the new numerical method, and the results are in excellent agreement with theoretical analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose a novel and efficient algorithm for modelling sub-65 nm clock interconnect-networks in the presence of process variation. We develop a method for delay analysis of interconnects considering the impact of Gaussian metal process variations. The resistance and capacitance of a distributed RC line are expressed as correlated Gaussian random variables which are then used to compute the standard deviation of delay Probability Distribution Function (PDF) at all nodes in the interconnect network. Main objective is to find delay PDF at a cheaper cost. Convergence of this approach is in probability distribution but not in mean of delay. We validate our approach against SPICE based Monte Carlo simulations while the current method entails significantly lower computational cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of estimating the time-dependent statistical characteristics of a random dynamical system is studied under two different settings. In the first, the system dynamics is governed by a differential equation parameterized by a random parameter, while in the second, this is governed by a differential equation with an underlying parameter sequence characterized by a continuous time Markov chain. We propose, for the first time in the literature, stochastic approximation algorithms for estimating various time-dependent process characteristics of the system. In particular, we provide efficient estimators for quantities such as the mean, variance and distribution of the process at any given time as well as the joint distribution and the autocorrelation coefficient at different times. A novel aspect of our approach is that we assume that information on the parameter model (i.e., its distribution in the first case and transition probabilities of the Markov chain in the second) is not available in either case. This is unlike most other work in the literature that assumes availability of such information. Also, most of the prior work in the literature is geared towards analyzing the steady-state system behavior of the random dynamical system while our focus is on analyzing the time-dependent statistical characteristics which are in general difficult to obtain. We prove the almost sure convergence of our stochastic approximation scheme in each case to the true value of the quantity being estimated. We provide a general class of strongly consistent estimators for the aforementioned statistical quantities with regular sample average estimators being a specific instance of these. We also present an application of the proposed scheme on a widely used model in population biology. Numerical experiments in this framework show that the time-dependent process characteristics as obtained using our algorithm in each case exhibit excellent agreement with exact results. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vicsek et al. proposed a biologically inspired model of self-propelled particles, which is now commonly referred to as the Vicsek model. Recently, attention has been directed at modifying the Vicsek model so as to improve convergence properties. In this paper, we propose two modification of the Vicsek model which leads to significant improvements in convergence times. The modifications involve an additional term in the heading update rule which depends only on the current or the past states of the particle's neighbors. The variation in convergence properties as the parameters of these modified versions are changed are closely investigated. It is found that in both cases, there exists an optimal value of the parameter which reduces convergence times significantly and the system undergoes a phase transition as the value of the parameter is increased beyond this optimal value. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rarefied gas flows through micro-channels are simulated using particle approaches, named as the information preservation (IP) method and the direct simulation Monte Carlo (DSMC) method. In simulating the low speed flows in long micro-channels the DSMC method encounters the problem of large sample size demand and the difficulty of regulating boundary conditions at the inlet and outlet. Some important computational issues in the calculation of long micro-channel flows by using the IP method, such as the use the conservative form of the mass conservation equation to guarantee the adjustment of the inlet and outlet boundary conditions and the super-relaxation scheme to accelerate the convergence process, are addressed. Stream-wise pressure distributions and mass fluxes through micro-channels given by the IP method agree well with experimental data measured in long micro-channels by Pong et al. (with a height to length ratio of 1.2:3000), Shih et al. (l.2:4800), Arkilic et al. and Arkilic (l.3:7500), respectively. The famous Knudsen minimum of normalized mass flux is observed in IP and DSMC calculations of a short micro-channel over the entire flow regime from continuum to free molecular, whereas the slip Navier-Stokes solution fails to predict it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate knowledge of traffic demands in a communication network enables or enhances a variety of traffic engineering and network management tasks of paramount importance for operational networks. Directly measuring a complete set of these demands is prohibitively expensive because of the huge amounts of data that must be collected and the performance impact that such measurements would impose on the regular behavior of the network. As a consequence, we must rely on statistical techniques to produce estimates of actual traffic demands from partial information. The performance of such techniques is however limited due to their reliance on limited information and the high amount of computations they incur, which limits their convergence behavior. In this paper we study a two-step approach for inferring network traffic demands. First we elaborate and evaluate a modeling approach for generating good starting points to be fed to iterative statistical inference techniques. We call these starting points informed priors since they are obtained using actual network information such as packet traces and SNMP link counts. Second we provide a very fast variant of the EM algorithm which extends its computation range, increasing its accuracy and decreasing its dependence on the quality of the starting point. Finally, we evaluate and compare alternative mechanisms for generating starting points and the convergence characteristics of our EM algorithm against a recently proposed Weighted Least Squares approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is a contribution to the literature on the explanatory power and calibration of heterogeneous asset pricing models. We set out a new stochastic market-fraction asset pricing model of fundamentalists and trend followers under a market maker. Our model explains key features of financial market behaviour such as market dominance, convergence to the fundamental price and under- and over-reaction. We use the dynamics of the underlying deterministic system to characterize these features and statistical properties, including convergence of the limiting distribution and autocorrelation structure. We confirm these properties using Monte Carlo simulations.