Exponential Rates of Convergence in the Ergodic Theorem: A Constructive Approach
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
19/10/2012
19/10/2012
2010
|
Resumo |
We prove that, once an algorithm of perfect simulation for a stationary and ergodic random field F taking values in S(Zd), S a bounded subset of R(n), is provided, the speed of convergence in the mean ergodic theorem occurs exponentially fast for F. Applications from (non-equilibrium) statistical mechanics and interacting particle systems are presented. Capes CNPq Fapesp |
Identificador |
JOURNAL OF STATISTICAL PHYSICS, v.139, n.3, p.367-374, 2010 0022-4715 http://producao.usp.br/handle/BDPI/20922 10.1007/s10955-010-9945-4 |
Idioma(s) |
eng |
Publicador |
SPRINGER |
Relação |
Journal of Statistical Physics |
Direitos |
restrictedAccess Copyright SPRINGER |
Palavras-Chave | #Exponential rates #Ergodic theorem #Random fields #Perfect simulation #RANDOM-FIELDS #FINITARY CODINGS #LARGE DEVIATIONS #Physics, Mathematical |
Tipo |
article original article publishedVersion |