Exponential Rates of Convergence in the Ergodic Theorem: A Constructive Approach


Autoria(s): BOSCO, G. G.; MACHADO, F. P.; RITCHIE, Thomas Logan
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

19/10/2012

19/10/2012

2010

Resumo

We prove that, once an algorithm of perfect simulation for a stationary and ergodic random field F taking values in S(Zd), S a bounded subset of R(n), is provided, the speed of convergence in the mean ergodic theorem occurs exponentially fast for F. Applications from (non-equilibrium) statistical mechanics and interacting particle systems are presented.

Capes

CNPq

Fapesp

Identificador

JOURNAL OF STATISTICAL PHYSICS, v.139, n.3, p.367-374, 2010

0022-4715

http://producao.usp.br/handle/BDPI/20922

10.1007/s10955-010-9945-4

http://dx.doi.org/10.1007/s10955-010-9945-4

Idioma(s)

eng

Publicador

SPRINGER

Relação

Journal of Statistical Physics

Direitos

restrictedAccess

Copyright SPRINGER

Palavras-Chave #Exponential rates #Ergodic theorem #Random fields #Perfect simulation #RANDOM-FIELDS #FINITARY CODINGS #LARGE DEVIATIONS #Physics, Mathematical
Tipo

article

original article

publishedVersion