1000 resultados para State bounding


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper considers time-delay systems with bounded disturbances. We study a new problem of finding an upper bound of an absolute value function of any given linear functional of the state vector starting from the origin of the system. Based on the Lyapunov-Krasovskii method combining with the recent Wirtinger-based integral inequality that has just been proposed by Seuret & Gouaisbaut (2013. Wirtinger-based integral inequality: application to time-delay systems. Automatica, 49, 2860-2866), sufficient conditions for the existence of an upper bound of the function are derived. The obtained results are shown to be more effective than those adapted from the existing works on reachable set bounding. Furthermore, the obtained results are applied to refine existing ellipsoidal bounds of the reachable sets. The effectiveness of the obtained results is illustrated by two numerical examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the authors address a new problem of finding, with a pre-specified time, bounds of partial states of non-linear discrete systems with a time-varying delay. A novel computational method for deriving the smallest bounds is presented. The method is based on a new comparison principle, a new algorithm for finding the infimum of a fractal function, and linear programming. The effectiveness of our obtained results is illustrated through a numerical example.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Linear systems with interval time-varying delay and unknown-but-bounded disturbances are considered in this paper. We study the problem of finding outer bound of forwards reachable sets and inter bound of backwards reachable sets of the system. Firstly, two definitions on forwards and backwards reachable sets, where initial state vectors are not necessary to be equal to zero, are introduced. Then, by using the Lyapunov-Krasovskii method, two sufficient conditions for the existence of: (i) the smallest possible outer bound of forwards reachable sets; and (ii) the largest possible inter bound of backwards reachable sets, are derived. These conditions are presented in terms of linear matrix inequalities with two parameters need to tuned, which therefore can be efficiently solved by combining existing convex optimization algorithms with a two-dimensional search method to obtain optimal bounds. Lastly, the obtained results are illustrated by four numerical examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a theoretical study of the multiple oxidation states (1+, 0, 1−, and 2−) of a meso,meso-linked diporphyrin, namely bis[10,15,20-triphenylporphyrinatozinc(II)-5-yl]butadiyne (4), using Time-Dependent Density Functional Theory (TDDFT). The origin of electronic transitions of singlet excited states is discussed in comparison to experimental spectra for the corresponding oxidation states of the close analogue bis{10,15,20-tris[3‘,5‘-di-tert-butylphenyl]porphyrinatozinc(II)-5-yl}butadiyne (3). The latter were measured in previous work under in situ spectroelectrochemical conditions. Excitation energies and orbital compositions of the excited states were obtained for these large delocalized aromatic radicals, which are unique examples of organic mixed-valence systems. The radical cations and anions of butadiyne-bridged diporphyrins such as 3 display characteristic electronic absorption bands in the near-IR region, which have been successfully predicted with use of these computational methods. The radicals are clearly of the “fully delocalized” or Class III type. The key spectral features of the neutral and dianionic states were also reproduced, although due to the large size of these molecules, quantitative agreement of energies with observations is not as good in the blue end of the visible region. The TDDFT calculations are largely in accord with a previous empirical model for the spectra, which was based simplistically on one-electron transitions among the eight key frontier orbitals of the C4 (1,4-butadiyne) linked diporphyrins.