926 resultados para Spread-Out Bragg Peak
Resumo:
Purpose: To investigate the clinical implications of a variable relative biological effectiveness (RBE) on proton dose fractionation. Using acute exposures, the current clinical adoption of a generic, constant cell killing RBE has been shown to underestimate the effect of the sharp increase in linear energy transfer (LET) in the distal regions of the spread-out Bragg peak (SOBP). However, experimental data for the impact of dose fractionation in such scenarios are still limited.
Methods and Materials: Human fibroblasts (AG01522) at 4 key depth positions on a clinical SOBP of maximum energy 219.65 MeV were subjected to various fractionation regimens with an interfraction period of 24 hours at Proton Therapy Center in Prague, Czech Republic. Cell killing RBE variations were measured using standard clonogenic assays and were further validated using Monte Carlo simulations and parameterized using a linear quadratic formalism.
Results: Significant variations in the cell killing RBE for fractionated exposures along the proton dose profile were observed. RBE increased sharply toward the distal position, corresponding to a reduction in cell sparing effectiveness of fractionated proton exposures at higher LET. The effect was more pronounced at smaller doses per fraction. Experimental survival fractions were adequately predicted using a linear quadratic formalism assuming full repair between fractions. Data were also used to validate a parameterized variable RBE model based on linear α parameter response with LET that showed considerable deviations from clinically predicted isoeffective fractionation regimens.
Conclusions: The RBE-weighted absorbed dose calculated using the clinically adopted generic RBE of 1.1 significantly underestimates the biological effective dose from variable RBE, particularly in fractionation regimens with low doses per fraction. Coupled with an increase in effective range in fractionated exposures, our study provides an RBE dataset that can be used by the modeling community for the optimization of fractionated proton therapy.
Resumo:
The relative biological effectiveness (RBE) of passive scattered (PS) and pencil beam scanned (PBS) proton beam delivery techniques for uniform beam configurations was determined by clonogenic survival. The radiobiological impact of modulated beam configurations on cell survival occurring in- or out-of-field for both delivery techniques was determined with intercellular communication intact or physically inhibited. Cell survival responses were compared to those observed using a 6 MV photon beam produced with a linear accelerator. DU-145 cells showed no significant difference in survival response to proton beams delivered by PS and PBS or 6 MV photons taking into account a RBE of 1.1 for protons at the centre of the spread out Bragg peak. Significant out-of-field effects similar to those observed for 6 MV photons were observed for both PS and PBS proton deliveries with cell survival decreasing to 50-60% survival for scattered doses of 0.05 and 0.03 Gy for passive scattered and pencil beam scanned beams respectively. The observed out-of-field responses were shown to be dependent on intercellular communication between the in-and out-of-field cell populations. These data demonstrate, for the first time, a similar RBE between passive and actively scanned proton beams and confirm that out-of-field effects may be important determinants of cell survival following exposure to modulated photon and proton fields
Resumo:
iological optimization of proton therapy critically depends on detailed evaluation of relative biological effectiveness (RBE) variations along the Bragg curve. The clinically accepted RBE value of 1.1 is an oversimplification, which disregards the steep rise of linear energy transfer (LET) at the distal end of the spread-out Bragg peak. We observed significant cell killing RBE variations dependent on beam modulation, intrinsic radiosensitivity, and LET in agreement with the LEM predicted values, indicating dose-averaged LET as a suitable parameter for biological effectiveness. Data have also been used to validate a RBE parameterized model.
Resumo:
Biological validation of new radiotherapy modalities is essential to understand their therapeutic potential. Antiprotons have been proposed for cancer therapy due to enhanced dose deposition provided by antiproton-nucleon annihilation. We assessed cellular DNA damage and relative biological effectiveness (RBE) of a clinically relevant antiproton beam. Despite a modest LET (~19 keV/μm), antiproton spread out Bragg peak (SOBP) irradiation caused significant residual γ-H2AX foci compared to X-ray, proton and antiproton plateau irradiation. RBE of ~1.48 in the SOBP and ~1 in the plateau were measured and used for a qualitative effective dose curve comparison with proton and carbon-ions. Foci in the antiproton SOBP were larger and more structured compared to X-rays, protons and carbon-ions. This is likely due to overlapping particle tracks near the annihilation vertex, creating spatially correlated DNA lesions. No biological effects were observed at 28–42 mm away from the primary beam suggesting minimal risk from long-range secondary particles.
Resumo:
Treatment planning of heavy-ion radiotherapy involves predictive calculation of not only the physical dose but also the biological dose in a patient body. The goal in designing beam-modulating devices for heavy ion therapy is to achieve uniform biological effects across the spread-out Bragg peak (SOBP). To achieve this, a mathematical model of Bragg peak movement is presented. The parameters of this model have been resolved with Monte Carlo method. And a rotating wheel filter is designed basing on the velocity of the Bragg peak movement.
Resumo:
Biological validation of new radiotherapy modalities is essential to understand their therapeutic potential. Antiprotons have been proposed for cancer therapy due to enhanced dose deposition provided by antiproton-nucleon annihilation. We assessed cellular DNA damage and relative biological effectiveness (RBE) of a clinically relevant antiproton beam. Despite a modest LET (,19 keV/mm), antiproton spread out Bragg peak (SOBP) irradiation caused significant residual c-H2AX foci compared to X-ray, proton and antiproton plateau irradiation. RBE of ,1.48 in the SOBP and ,1 in the plateau were measured and used for a qualitative effective dose curve comparison with proton and carbon-ions. Foci in the antiproton SOBP were larger and more structured compared to X-rays, protons and carbon-ions. This is likely due to overlapping particle tracks near the annihilation vertex, creating spatially correlated DNA lesions. No biological effects were observed at 28–42 mm away from the primary beam suggesting minimal risk from long-range secondary particles.
Resumo:
PURPOSE: To investigate the variations in induction and repair of DNA damage along the proton path, after a previous report on the increasing biological effectiveness along clinically modulated 60-MeV proton beams.
METHODS AND MATERIALS: Human skin fibroblast (AG01522) cells were irradiated along a monoenergetic and a modulated spread-out Bragg peak (SOBP) proton beam used for treating ocular melanoma at the Douglas Cyclotron, Clatterbridge Centre for Oncology, Wirral, Liverpool, United Kingdom. The DNA damage response was studied using the 53BP1 foci formation assay. The linear energy transfer (LET) dependence was studied by irradiating the cells at depths corresponding to entrance, proximal, middle, and distal positions of SOBP and the entrance and peak position for the pristine beam.
RESULTS: A significant amount of persistent foci was observed at the distal end of the SOBP, suggesting complex residual DNA double-strand break damage induction corresponding to the highest LET values achievable by modulated proton beams. Unlike the directly irradiated, medium-sharing bystander cells did not show any significant increase in residual foci.
CONCLUSIONS: The DNA damage response along the proton beam path was similar to the response of X rays, confirming the low-LET quality of the proton exposure. However, at the distal end of SOBP our data indicate an increased complexity of DNA lesions and slower repair kinetics. A lack of significant induction of 53BP1 foci in the bystander cells suggests a minor role of cell signaling for DNA damage under these conditions.
Resumo:
Purpose: The purpose of this work is to investigate the radiosensitizing effect of gold nanoparticle (GNP) induced vasculature damage for proton, megavoltage (MV) photon, and kilovoltage (kV) photon irradiation. Methods: Monte Carlo simulations were carried out using tool for particle simulation (TOPAS) to obtain the spatial dose distribution in close proximity up to 20 µm from the GNPs. The spatial dose distribution from GNPs was used as an input to calculate the dose deposited to the blood vessels. GNP induced vasculature damage was evaluated for three particle sources (a clinical spread out Bragg peak proton beam, a 6 MV photon beam, and two kV photon beams). For each particle source, various depths in tissue, GNP sizes (2, 10, and 20 nm diameter), and vessel diameters (8, 14, and 20 µm) were investigated. Two GNP distributions in lumen were considered, either homogeneously distributed in the vessel or attached to the inner wall of the vessel. Doses of 30 Gy and 2 Gy were considered, representing typical in vivo enhancement studies and conventional clinical fractionation, respectively. Results: These simulations showed that for 20 Au-mg/g GNP blood concentration homogeneously distributed in the vessel, the additional dose at the inner vascular wall encircling the lumen was 43% of the prescribed dose at the depth of treatment for the 250 kVp photon source, 1% for the 6 MV photon source, and 0.1% for the proton beam. For kV photons, GNPs caused 15% more dose in the vascular wall for 150 kVp source than for 250 kVp. For 6 MV photons, GNPs caused 0.2% more dose in the vascular wall at 20 cm depth in water as compared to at depth of maximum dose (Dmax). For proton therapy, GNPs caused the same dose in the vascular wall for all depths across the spread out Bragg peak with 12.7 cm range and 7 cm modulation. For the same weight of GNPs in the vessel, 2 nm diameter GNPs caused three times more damage to the vessel than 20 nm diameter GNPs. When the GNPs were attached to the inner vascular wall, the damage to the inner vascular wall can be up to 207% of the prescribed dose for the 250 kVp photon source, 4% for the 6 MV photon source, and 2% for the proton beam. Even though the average dose increase from the proton beam and MV photon beam was not large, there were high dose spikes that elevate the local dose of the parts of the blood vessel to be higher than 15 Gy even for 2 Gy prescribed dose, especially when the GNPs can be actively targeted to the endothelial cells. Conclusions: GNPs can potentially be used to enhance radiation therapy by causing vasculature damage through high dose spikes caused by the addition of GNPs especially for hypofractionated treatment. If GNPs are designed to actively accumulate at the tumor vasculature walls, vasculature damage can be increased significantly. The largest enhancement is seen using kilovoltage photons due to the photoelectric effect. Although no significant average dose enhancement was observed for the whole vasculature structure for both MV photons and protons, they can cause high local dose escalation (>15 Gy) to areas of the blood vessel that can potentially contribute to the disruption of the functionality of the blood vessels in the tumor.
Enhanced biological effect induced by a radioactive C-9-ion beam at the depths around its Bragg peak
Resumo:
To explore the potential of double irradiation source, radioactive C-9-ion beam, in tumor therapy, a comparative study oil the surviving effect of human salivary gland cells at different penetration depths between C-9 and C-12-ion beams has been carried out. The 9C-ion C beam, especially at the distal side of the beam came out more efficient in cell killing at the depths around its Bragg peak than the 12 Bragg peak. Compared to the C-12 beam, an increase in RBE by a factor of up to 2.13 has been observed at the depths distal to the Bragg peak of the 9C beam. The 9C beam showed an enhanced biological effect at the penetration depths around its Bragg peak, corresponding to the stopping region of the incident C-9-ions and where the delayed low-energy particles were emitted. Further analysis revealed that cell lethality by the emitted particles from the stopping C-9-ions is responsible for the excessive biological effect at the penetration depths around the Bragg peak of the C-9 beam.
Resumo:
A new method of measuring the thickness of GaN epilayers on sapphire (0 0 0 1) substrates by using double crystal X-ray diffraction was proposed. The ratio of the integrated intensity between the GaN epilayer and the sapphire substrate showed a linear relationship with the GaN epilayer thickness up to 2.12 mum. It is practical and convenient to measure the GaN epilayer thickness using this ratio, and can mostly eliminate the effect of the reabsorption, the extinction and other scattering factors of the GaN epilayers. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The aim of this work is to develop a Demand-Side-Response (DSR) model, which assists electricity end-users to be engaged in mitigating peak demands on the electricity network in Eastern and Southern Australia. The proposed innovative model will comprise a technical set-up of a programmable internet relay, a router, solid state switches in addition to the suitable software to control electricity demand at user's premises. The software on appropriate multimedia tool (CD Rom) will be curtailing/shifting electric loads to the most appropriate time of the day following the implemented economic model, which is designed to be maximizing financial benefits to electricity consumers. Additionally the model is targeting a national electrical load be spread-out evenly throughout the year in order to satisfy best economic performance for electricity generation, transmission and distribution. The model is applicable in region managed by the Australian Energy Management Operator (AEMO) covering states of Eastern-, Southern-Australia and Tasmania.
Resumo:
Electroluminescent zinc sulfide doped with copper and chloride (ZnS:Cu, Cl) powder was heated to 400°C and rapidly quenched to room temperature. Comparison between the quenched and non-quenched phosphors using synchrotron radiation X-ray powder diffraction (XRPD) (λ = 0.828692 Å) and X-ray absorption spectroscopy (XAS) was made. XRPD shows that the expected highly faulted structure is observed with excellent resolution out to 150° 2θ (or to (12 2 2) of the sphalerite phase). The quenched sample compared to the unheated sample shows a large change in peak ratios between 46.7° and 46.9°, which is thought to correspond to the wurtzite (0 0 6), (0 3 2) and sphalerite (3 3 3)/(5 1 1) peaks. Hence, a large proportion of this sphalerite diffraction is lost from the material upon rapid quenching, but not when the material is allowed to cool slowly. The Zn K-edge XAS data indicate that the crystalline structures are indistinguishable using this technique, but do give an indication that the electronic structure has altered due to changing intensity of the white line. It is noted that the blue electroluminescence (EL) emission bands are lost upon quenching: however, a large amount of total EL emission intensity is also removed, which is consistent with our findings. We report the XRPD of a working alternating-current electroluminescence device in the synchrotron X-ray beam, which exhibits a new diffraction pattern when the device is powered in an AC field even though the phosphor is fixed in the binder. Significantly, only a few crystals are required to yield the diffraction data because of the high flux X-ray source. These in panel data show multiple sharp diffraction lines spread out under the region, where capillary data show broad diffraction intensity indicating that the phosphor powder is comprised of unique crystals, each having different structures.