967 resultados para Spray Drying
Resumo:
This study was aimed at spray drying hydrolysed casein using gum Arabic as the carrier agent, in order to decrease the bitter taste. Three formulations with differing proportions of hydrolysed casein: gum Arabic (10:90, 20:80 and 30:70) were prepared and characterized. They were evaluated for their moisture content, water activity, hygroscopicity, dispersibility in water and in oil, particle size and distribution, particle morphology, thermal behaviour (DSC) and bitter taste by a trained sensory panel using a paired-comparison test (free samples vs. spray dried samples). The proportion of hydrolysed casein did not affect the morphology of the microspheres. The spray drying process increased product stability and modified the dissolution time, but had no effect on the ability of the material to dissolve in either water or oil. The sensory tests showed that the spray drying process using gum Arabic as the carrier was efficient in attenuating or masking the bitter taste of the hydrolysed casein.
Resumo:
The aim of this work was to investigate the effects of drying parameters on the retention of the enzymatic activity and on the physical properties of spray-dried pineapple stem extract. A Box and Behnken experimental design was used to investigate the effects of the processing parameters on the product properties. The parameters studied were the inlet temperature of drying gas (Tgi), the feed flow rate of the pineapple extract relative to evaporative capacity of the system (Ws /Wmax), and the concentration of maltodextrin added to the extract (MD). Significant effects of the processing parameters on the retention of the proteolytic activity of the powdered extract were observed. High processing temperatures lead to a product with a smaller moisture content, particle size, and lower agglomerating tendency. A product with insignificant losses of the proteolytic activity ( 10%) and low moisture content (less than 6.5%) is obtained at selected conditions.
Resumo:
The influence of concentration and incorporation time of different drying excipients on the processing yields and physical properties of Eugenia dysenterica DC spray-dried extracts were investigated following a factorial design. Under the established conditions, the process yield ranged from 57.55 to 89.14%, and in most experiments, the recovered products presented suitable flowability and compressibility, as demonstrated by the Hausner factor, Carr index, and angle of repose. Additionally, in a general way, the parameters related to the dried products` flowability varied over a range acceptable for pharmaceutical purposes. An analysis of variance (ANOVA) proved that both factors and some of their interactions significantly affected most of the investigated responses at different levels. Mannitol proved to be an interesting alternative as an excipient for the drying of herbal extracts, even at low concentrations such as 12.5%. Furthermore, these results imply that the best condition to obtain dry extracts of E. dysenterica with high performance and adequate pharmacotechnical properties involves the lowest concentration and the highest incorporation time of mannitol.
Resumo:
Red yeast rice is a pigmented material that is traditionally used in Asia as a food colorant. In addition to food applications, red yeast rice is known in traditional Chinese medicine for its therapeutic actions. The aim of this work was to study the quality interactions during spray drying of extracts from the Monascus ruber van Tiegham fermentation broth. The quality indicators used for the dry powder properties were the levels of monacolin K, ratio of red to yellow pigments, as well as their antioxidant activity. The experiments followed a Box-Behnken design to study the effects of the adjuvant/drug ratio, adjuvant incorporation time, and oulet drying temperature on the pharmacotechnical, chemical, and biological properties of the dry extract. The influences of these factors on the characteristics of the dry powder were evaluated by the bulk density, tapped density, Carr index, Hausner factor, residual moisture content, water activity, antioxidant activity, monacolin K, yellow-to-red pigment ratio, and antioxidant activity. The analysis of variance (ANOVA) on experimental data revealed that an increase in drying temperature significantly increased the dry powder yield and caused an improvement in powder flow properties, which may be related to lower moisture contents. The drying temperature did not affect the monacolin K content in dry powder but showed a complex influence on its antioxidant activity. The increase in drying adjuvant-to-drug ratio affected the yield and also indicated a protective effect on the monacolin K content. The duration of drying adjuvant incorporation had little or negligible effect on powder properties. The dry extracts of red yeast rice showed adequate properties and the process proposed herein can be used to prepare nutraceutical products.
Resumo:
In this study the effects of spray-drying conditions on the retention of enzyme activity of lipase produced by the endophytic fungus Cercospora kikuchii have been investigated. Drying runs were carried out in a bench-top spray dryer with a concurrent flow regime. The influence of the variables inlet temperature of drying gas, Tgi (86.4 to 153.6 degrees C); mass flow rate of the enzymatic extract fed to the dryer, Ws (2.63 to 9.36g/min); and concentration of the drying adjuvant added to the extract, ADJ (1.95 to 12.05%), on the spray-drying performance and on product quality was evaluated through experimental planning and regression analysis. The use of maltodextrin, as a stabilizing agent, slightly improved the retention of enzyme activity compared to -cyclodextrin. Statistical optimization of the experimental results allowed the determination of the processing conditions that maximized the retention of the enzymatic activity (RAE), namely, concentration of drying adjuvants of 12.05%, inlet temperature of the drying gas of 153.6 degrees C, and flow rate of the enzymatic extract fed to the dryer of 9.36g/min for the both drying adjuvants investigated.
Resumo:
The present study aimed the preparation and characterization of ternary solid dispersions by direct spray drying of a liquid suspension containing curcumin, a solubility enhancer and a drying aid. The experiments followed a Box-Behnken design in order to evaluate the influence of temperature, ratio of curcumin: lipidic carrier, and the collodial silicon dioxide content on the characteristics of the microparticulated solid dispersions. The angle of repose, Hausner factor, Carr index, water activity, and solubility were used to characterize solid dispersions. The results show that water activity, Hausner factor, and Carr index varied in an acceptable range for pharmaceutical purposes. The condition that maximizes solubility was determined using an exploratory design based on a surface response analysis and allowed a 3200-fold increase in curcumin solubility. Ternary solid dispersion showed a 90% curcumin release after 10min during a dissolution test. The results show that the spray drying of a liquid feed is an attractive and promising alternative to obtain enhanced solubility drug ternary solid dispersions.
Resumo:
Inclusion complexes of Lippia sidoides essential oil and beta-cyclodextrin were obtained by slurry method and its solid powdered form was prepared using spray drying. The influence of the spray drying, as well as the different essential oil:beta-cyclodextrin ratio on the characteristics of the final product was investigated. With regard to the total oil retention 1:10 mass/mass ratio as optimal was found between the essential oil and beta-cyclodextrin. Thermoanalytical techniques (TG, EGD, TG-MS) were used to support the formation of inclusion complex and to examine their physicochemical properties after accelerated storage conditions. It may be assumed that the thermal properties of the complexes were influenced not only by the different essential oil/beta-cyclodextrin ratio but also by the storage conditions. In the aspect of their thermal stabilities, complex prepared with 1:10 m/m ratio (essential oil: beta-cyclodextrin) was the most stable one.
Resumo:
The present work deals with improving the production and stabilization of lipases from Cercospora kikuchii. Maximum enzyme production (9.384 U/ml) was obtained after 6 days in a medium supplemented with 2% soybean oil. The lipases were spray dried with different adjuvants, and their stability was studied. The residual enzyme activity after drying with 10% (w/v) of lactose, b- cyclodextrin, maltodextrin, mannitol, gum arabic, and trehalose ranged from 63 to 100%. The enzyme activity was lost in the absence of adjuvants. Most of the adjuvants used kept up at least 50% of the enzymatic activity at 5 degrees C and 40% at 25 degrees C after 8 months. The lipase dried with 10% of beta-cyclodextrin retained 72% of activity at 5 degrees C. Lipases were separated by butyl-sepharose column into 4 pools, and pool 4 was partially purified (33.1%; 269.5 U/mg protein). This pool was also spray dried in maltodextrin DE10, and it maintained 100% of activity.
Resumo:
The spray drying method was used to prepare luminescent microspheres. These microspheres were prepared by spraying an aqueous solution of dextrin and an europium(III) complex with subsequent drying in a hot medium. The spray dried powder was characterized by scanning electron microscopy (SEM) and photoluminescence spectroscopy (PL). Particle size distribution was estimated from SEM images. The ultrasonic spray drying technique was successfully applied to yield a microparticulated and red luminescent powder composed by the [Eu(dpa)(3)](3-) stop (dpa = dipicolinic acid) complex incorporated in dextrin microspheres.
Resumo:
Stickiness is a major reason that limits the spray drying of various sugar-rich food products. Higher hygroscopicity of amorphous powder, increase in solubility of sugars with temperature, and lower melting point and glass transition temperature, contribute to the stickiness problem. So far, the glass transition temperature has been widely accepted as a best indicator for stickiness. There are various manoeuvres that have been applied to spray dry such products. Some of them are the addition of drying aids, modification of drier design and use of mild drying temperature conditions. This review paper highlights the major research works that deal with the stickiness property of sugar-rich foods.
Resumo:
Dissertation presented to Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa for obtaining the master degree in Membrane Engineering
Resumo:
Objective: The aim of this study was to obtain and characterize microcapsules with Ellagic Acid (EA) from pomegranate as core material and Karaya Gum (KG) as wall material. Methods: EA was obtained from dry pomegranate peel powder via methanolysis and quantified by HPLC. Microcapsules were obtained preparing a dispersion containing KG and EA in phosphate buffer pH 8. The dispersion was processed in a spray dryer under specific conditions (inlet temperature at 150 °C, feed flow at 30% and aspirator at 100 %) for obtaining of microcapsules. Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were used for characterization. Results: Obtained material contains 98.03±2.82 mg EA/g of pomegranate peel. FTIR showed that there were changes in the molecular structure of microcapsules referred to raw materials. SEM confirmed that particles obtained had micron-size (1-5 µm). DSC analysis showed that raw materials had glass transition temperatures of 79.58 and 83.41 °C and for microcapsules the value was67.25 °C. Conclusion: Methanolysis is a viable technique for the obtaining of EA from the peel of pomegranate. KG shows good potential for be used as wall material for EA microencapsulation.
Resumo:
In this work, a new adsorbent was prepared by microencapsulation of sulfoxine into chitosan microspheres by the spray drying technique. The new adsorbent was characterized by Raman spectroscopy, scanning electron microscopy and microanalysis of energy dispersive X-rays. The Cu(II) adsorption was studied as a function of pH, time and concentration. The optimum pH was found to be 6.0. The kinetic and equilibrium data showed that the adsorption process followed the pseudo second-order kinetic model and the Langmuir isotherm model over the entire concentration range. An increase of 8.0% in the maximum adsorption capacity of the adsorbent (53.8 mg g-1) was observed as compared to chitosan glutaraldehyde cross-linked microspheres.