999 resultados para Spin systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a seminal paper [10], Weitz gave a deterministic fully polynomial approximation scheme for counting exponentially weighted independent sets (which is the same as approximating the partition function of the hard-core model from statistical physics) in graphs of degree at most d, up to the critical activity for the uniqueness of the Gibbs measure on the innite d-regular tree. ore recently Sly [8] (see also [1]) showed that this is optimal in the sense that if here is an FPRAS for the hard-core partition function on graphs of maximum egree d for activities larger than the critical activity on the innite d-regular ree then NP = RP. In this paper we extend Weitz's approach to derive a deterministic fully polynomial approximation scheme for the partition function of general two-state anti-ferromagnetic spin systems on graphs of maximum degree d, up to the corresponding critical point on the d-regular tree. The main ingredient of our result is a proof that for two-state anti-ferromagnetic spin systems on the d-regular tree, weak spatial mixing implies strong spatial mixing. his in turn uses a message-decay argument which extends a similar approach proposed recently for the hard-core model by Restrepo et al [7] to the case of general two-state anti-ferromagnetic spin systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Positive-operator-valued measurements on a finite number of N identically prepared systems of arbitrary spin J are discussed. Pure states are characterized in terms of Bloch-like vectors restricted by a SU(2J+1) covariant constraint. This representation allows for a simple description of the equations to be fulfilled by optimal measurements. We explicitly find the minimal positive-operator-valued measurement for the N=2 case, a rigorous bound for N=3, and set up the analysis for arbitrary N.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a very simple but fairly unknown method to obtain exact lower bounds to the ground-state energy of any Hamiltonian that can be partitioned into a sum of sub-Hamiltonians. The technique is applied, in particular, to the two-dimensional spin-1/2 antiferromagnetic Heisenberg model. Reasonably good results are easily obtained and the extension of the method to other systems is straightforward.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution ac susceptibility and thermal conductivity measurement on Cu2Te2O5X2 (X=Br,Cl) single crystals are reported. For Br-sample, sample dependence prevents one from distinguishing between possibilities of magnetically ordered and spin-singlet ground states. In Cl-sample a three-dimensional transition at 18.5 K is accompanied by almost isotropic behavior of susceptibility and almost switching behavior of thermal conductivity. Thermal conductivity studies suggest the presence of a tremendous spin-lattice coupling characterizing Cl- but not Br-sample. Below the transition Cl-sample is in a complex magnetic state involving AF order but also the elements consistent with the presence of a gap in the excitation spectrum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider general d-dimensional lattice ferromagnetic spin systems with nearest neighbor interactions in the high temperature region ('beta' << 1). Each model is characterized by a single site apriori spin distribution taken to be even. We also take the parameter 'alfa' = ('S POT.4') - 3 '(S POT.2') POT.2' > 0, i.e. in the region which we call Gaussian subjugation, where ('S POT.K') denotes the kth moment of the apriori distribution. Associated with the model is a lattice quantum field theory known to contain a particle of asymptotic mass -ln 'beta' and a bound state below the two-particle threshold. We develop a 'beta' analytic perturbation theory for the binding energy of this bound state. As a key ingredient in obtaining our result we show that the Fourier transform of the two-point function is a meromorphic function, with a simple pole, in a suitable complex spectral parameter and the coefficients of its Laurent expansion are analytic in 'beta'.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the thermodynamic properties of a certain type of space-inhomogeneous Fermi and quantum spin systems on lattices. We are particularly interested in the case where the space scale of the inhomogeneities stays macroscopic, but very small as compared to the side-length of the box containing fermions or spins. The present study is however not restricted to "macroscopic inhomogeneities" and also includes the (periodic) microscopic and mesoscopic cases. We prove that - as in the homogeneous case - the pressure is, up to a minus sign, the conservative value of a two-person zero-sum game, named here thermodynamic game. Because of the absence of space symmetries in such inhomogeneous systems, it is not clear from the beginning what kind of object equilibrium states should be in the thermodynamic limit. However, we give rigorous statements on correlations functions for large boxes. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4763465]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Feedback stabilization of an ensemble of non interacting half spins described by the Bloch equations is considered. This system may be seen as an interesting example for infinite dimensional systems with continuous spectra. We propose an explicit feedback law that stabilizes asymptotically the system around a uniform state of spin +1/2 or -1/2. The proof of the convergence is done locally around the equilibrium in the H-1 topology. This local convergence is shown to be a weak asymptotic convergence for the H-1 topology and thus a strong convergence for the C topology. The proof relies on an adaptation of the LaSalle invariance principle to infinite dimensional systems. Numerical simulations illustrate the efficiency of these feedback laws, even for initial conditions far from the equilibrium. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extension of Boltzmann-Gibbs thermostatistics, proposed by Tsallis, introduces an additional parameter q to the inverse temperature beta. Here, we show that a previously introduced generalized Metropolis dynamics to evolve spin models is not local and does not obey the detailed energy balance. In this dynamics, locality is only retrieved for q = 1, which corresponds to the standard Metropolis algorithm. Nonlocality implies very time-consuming computer calculations, since the energy of the whole system must be reevaluated when a single spin is flipped. To circumvent this costly calculation, we propose a generalized master equation, which gives rise to a local generalized Metropolis dynamics that obeys the detailed energy balance. To compare the different critical values obtained with other generalized dynamics, we perform Monte Carlo simulations in equilibrium for the Ising model. By using short-time nonequilibrium numerical simulations, we also calculate for this model the critical temperature and the static and dynamical critical exponents as functions of q. Even for q not equal 1, we show that suitable time-evolving power laws can be found for each initial condition. Our numerical experiments corroborate the literature results when we use nonlocal dynamics, showing that short-time parameter determination works also in this case. However, the dynamics governed by the new master equation leads to different results for critical temperatures and also the critical exponents affecting universality classes. We further propose a simple algorithm to optimize modeling the time evolution with a power law, considering in a log-log plot two successive refinements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a large quantum system with spins 12 whose dynamics is driven entirely by measurements of the total spin of spin pairs. This gives rise to a dissipative coupling to the environment. When one averages over the measurement results, the corresponding real-time path integral does not suffer from a sign problem. Using an efficient cluster algorithm, we study the real-time evolution from an initial antiferromagnetic state of the two-dimensional Heisenberg model, which is driven to a disordered phase, not by a Hamiltonian, but by sporadic measurements or by continuous Lindblad evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the real-time evolution of large open quantum spin systems in two spatial dimensions, whose dynamics is entirely driven by a dissipative coupling to the environment. We consider different dissipative processes and investigate the real-time evolution from an ordered phase of the Heisenberg or XY model towards a disordered phase at late times, disregarding unitary Hamiltonian dynamics. The corresponding Kossakowski-Lindblad equation is solved via an efficient cluster algorithm. We find that the symmetry of the dissipative process determines the time scales, which govern the approach towards a new equilibrium phase at late times. Most notably, we find a slow equilibration if the dissipative process conserves any of the magnetization Fourier modes. In these cases, the dynamics can be interpreted as a diffusion process of the conserved quantity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using quantum Monte Carlo, we study the nonequilibrium transport of magnetization in large open strongly correlated quantum spin-12 systems driven by purely dissipative processes that conserve the uniform or staggered magnetization, disregarding unitary Hamiltonian dynamics. We prepare both a low-temperature Heisenberg ferromagnet and an antiferromagnet in two parts of the system that are initially isolated from each other. We then bring the two subsystems in contact and study their real-time dissipative dynamics for different geometries. The flow of the uniform or staggered magnetization from one part of the system to the other is described by a diffusion equation that can be derived analytically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the hardwired implementation of algorithms for Monte Carlo simulations of a large class of spin models. We have implemented these algorithms as VHDL codes and we have mapped them onto a dedicated processor based on a large FPGA device. The measured performance on one such processor is comparable to O(100) carefully programmed high-end PCs: it turns out to be even better for some selected spin models. We describe here codes that we are currently executing on the IANUS massively parallel FPGA-based system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physical implementation of quantum information processing is one of the major challenges of current research. In the last few years, several theoretical proposals and experimental demonstrations on a small number of qubits have been carried out, but a quantum computing architecture that is straightforwardly scalable, universal, and realizable with state-of-the-art technology is still lacking. In particular, a major ultimate objective is the construction of quantum simulators, yielding massively increased computational power in simulating quantum systems. Here we investigate promising routes towards the actual realization of a quantum computer, based on spin systems. The first one employs molecular nanomagnets with a doublet ground state to encode each qubit and exploits the wide chemical tunability of these systems to obtain the proper topology of inter-qubit interactions. Indeed, recent advances in coordination chemistry allow us to arrange these qubits in chains, with tailored interactions mediated by magnetic linkers. These act as switches of the effective qubit-qubit coupling, thus enabling the implementation of one- and two-qubit gates. Molecular qubits can be controlled either by uniform magnetic pulses, either by local electric fields. We introduce here two different schemes for quantum information processing with either global or local control of the inter-qubit interaction and demonstrate the high performance of these platforms by simulating the system time evolution with state-of-the-art parameters. The second architecture we propose is based on a hybrid spin-photon qubit encoding, which exploits the best characteristic of photons, whose mobility is exploited to efficiently establish long-range entanglement, and spin systems, which ensure long coherence times. The setup consists of spin ensembles coherently coupled to single photons within superconducting coplanar waveguide resonators. The tunability of the resonators frequency is exploited as the only manipulation tool to implement a universal set of quantum gates, by bringing the photons into/out of resonance with the spin transition. The time evolution of the system subject to the pulse sequence used to implement complex quantum algorithms has been simulated by numerically integrating the master equation for the system density matrix, thus including the harmful effects of decoherence. Finally a scheme to overcome the leakage of information due to inhomogeneous broadening of the spin ensemble is pointed out. Both the proposed setups are based on state-of-the-art technological achievements. By extensive numerical experiments we show that their performance is remarkably good, even for the implementation of long sequences of gates used to simulate interesting physical models. Therefore, the here examined systems are really promising buildingblocks of future scalable architectures and can be used for proof-of-principle experiments of quantum information processing and quantum simulation.