977 resultados para Spin state
Resumo:
High-pressure magnetic susceptibility measurements have been carried out on Fe(dipy)2(NCS)2 and Fe(phen)2(NCS)2 in the pressure range 1–10 kbar and tempeature range 80–300 K in order to investigate the factors responsible for the spin-state transitions. The transitions change from first order to second or higher order upon application of pressure. The temperature variation of the susceptibility at different pressures has been analysed quantitatively within the framework of available models. It is shown that the relative magnitudes of the ΔG0 of high-spin and low-spin conversion and the ferromagnetic interaction between high-spin complexes determines the nature of the transition.
Resumo:
Spin-state equilibria in the whole set of LCoO3 (where L stands for a rare-earth metal or Y) have been investigated with the use of 59Co NMR as a probe for the polycrystalline samples (except Ce) in the temperature interval 110-550 K and frequency range 3- 11.6 MHz. Besides confirming the coexistence of the high-spin—low-spin state in this temperature range, a quadrupolar interaction of ∼0.1 -0.5 MHz has been detected for the first time from 59Co NMR. The NMR line shape is found to depend strongly on the relative magnitude of the magnetic and quadrupolar interactions present. Analysis of the powder pattern reveals two basically different types of transferred hyperfine interaction between the lighter and heavier members of the rare-earth series. The first three members of the lighter rare-earth metals La, Pr (rhombohedral), and Nd (tetragonal), exhibit second-order quadrupolar interaction with a zero-asymmetry parameter at lower temperatures. Above a critical temperature TS (dependent on the size of the rare-earth ion), the quadrupolar interaction becomes temperature dependent and eventually gives rise to a first-order interaction thus indicating a possible second-order phase change. Sm and Eu (orthorhombic) exhibit also a second-order quadrupolar interaction with a nonzero asymmetry parameter ((η∼0.47)) at 300 K, while the orthorhombic second-half members (Dy,..., Lu and Y) exhibit first-order quadrupolar interaction at all temperatures. Normal paramagnetic behavior, i.e., a linear variation of Kiso with T-1, has been observed in the heavier rare-earth cobaltites (Er,..., Lu and Y), whereas an anomalous variation has been observed in (La,..., Nd)CoO3. Thus, Kiso increases with increasing temperature in PrCoO3 and NdCoO3. These observations corroborate the model of the spin-state equilibria in LCoO3 originally proposed by Raccah and Goodenough. A high-spin—low-spin ratio, r=1, can be stabilized in the perovskite structure by a cooperative displacement of the oxygen atoms from the high-spin towards the low-spin cation. Where this ordering into high- and low-spin sublattices occurs at r=1, one can anticipate equivalent displacement of all near-neighbor oxygen atoms towards a low-spin cobalt ion. Thus the heavier LCoO3 exhibits a small temperature-independent first-order quadrupolar interaction. Where r<1, the high- and low-spin states are disordered, giving rise to a temperature-dependent second-order quadrupolar interaction with an anomalous Kiso for the lighter LCoO3.
Resumo:
Hyperfine interaction parameters reveal differences in the nature of spin-state equilibria in the lighter and heavier rare-earth cobaltites; the crystal-field parameter is lower in the lighter cobaltites. Temperature variation of the quadrupolar coupling constant is also more marked in the lighter rare-earth cobaltites, with NdCoO3 showing evidence for a structural phase transition.
Resumo:
Rare-earth trioxocobaltates(lll), Ln[CoO,], with Ln = Pr, Nd, Tb, Dy. and Yb exhibit low-spin to high-spin transitions of cobalt characterised by a maximum in the Ax-l against temperature plots where Ax is the cobalt contribution to the magnetic susceptibility. The susceptibility behaviour is distinct from that of La[CoO,] which shows a plateau in the x-I-T curve accompanied by a structural transition. The temperature at which the AX- I-T curve shows a maximum increases with the decrease in the size of the rare-earth ion. The susceptibility behavior of solid solutions of La,,Nd,CoO, has been investigated to see how the behaviour characteristic of Nd[CoO,] changes to that of La[CoO,].
Resumo:
Transitions from the low-to the high-spin state in Fe2+ and Co3+ compounds have been examined by X-ray and UV photoelectron spectroscopy. It has been shown that the core-level bands in XPES, in particular the metal 3s band, as well as the valence bands, are diagnosis in the study of spin-state transitions.
Resumo:
The model for spin-state transitions described by Bari and Sivardiere (1972) is static and can be solved exactly even when the dynamics of the lattice are included; the dynamic model does not, however, show any phase transition. A coupling between the octahedra, on the other hand, leads to a phase transition in the dynamical two-sublattice displacement model. A coupling of the spin states to the cube of the sublattice displacement leads to a first-order phase transition. The most reasonable model appears to be a two-phonon model in which an ion-cage mode mixes the spin states, while a breathing mode couples to the spin states without mixing. This model explains the non-zero population of high-spin states at low temperatures, temperature-dependent variations in the inverse susceptibility and the spin-state population ratio, as well as the structural phase transitions accompanying spin-state transitions found in some systems.
Resumo:
Infrared spectroscopy provides a valuable tool to investigate the spin-state transition in Fe(II) complexes of the type Fe(Phen)2(NCS)2. With progressive substitution of Fe by Mn, the first-order transition changes over to a second-order transition, with a high residual population of the high-spin state even at very low temperatures
Resumo:
The structure of Fe(Phen)(2)(NCS)(2) has been examined across the first-order spin-state transition by EXAFS with full multiple scattering analysis. The EXAFS data at 298 K can be satisfactorily assigned to the high-spin state, but the analysis of the low-temperature data at 90 K is not entirely unequivocal, although consistent with the predominant presence of the low-spin state. That some proportion of the high-spin state remains at low temperatures, well below the first-order transition, is clearly evidenced in the infrared spectra, suggesting possible sublattice ordering.
Resumo:
We report the optical spectra and single crystal magnetic susceptibility of the one-dimensional antiferromagnet KFeS2. Measurements have been carried out to ascertain the spin state of Fe3+ and the nature of the magnetic interactions in this compound. The optical spectra and magnetic susceptibility could be consistently interpreted using a S = 1/2 spin ground state for the Fe3+ ion. The features in the optical spectra have been assigned to transitions within the d-electron manifold of the Fe3+ ion, and analysed in the strong field limit of the ligand field theory. The high temperature isotropic magnetic susceptibility is typical of a low-dimensional system and exhibits a broad maximum at similar to 565 K. The susceptibility shows a well defined transition to a three dimensionally ordered antiferromagnetic state at T-N = 250 K. The intra and interchain exchange constants, J and J', have been evaluated from the experimental susceptibilities using the relationship between these quantities, and chi(max), T-max, and T-N for a spin 1/2 one-dimensional chain. The values are J = -440.71 K, and J' = 53.94 K. Using these values of J and J', the susceptibility of a spin 1/2 Heisenberg chain was calculated. A non-interacting spin wave model was used below T-N. The susceptibility in the paramagnetic region was calculated from the theoretical curves for an infinite S = 1/2 chain. The calculated susceptibility compares well with the experimental data of KFeS2. Further support for a one-dimensional spin 1/2 model comes from the fact that the calculated perpendicular susceptibility at 0K (2.75 x 10(-4) emu/mol) evaluated considering the zero point reduction in magnetization from spin wave theory is close to the projected value (2.7 x 10(-4) emu/mol) obtained from the experimental data.
Resumo:
We present a comparative study of the spin states and electronic properties of La1-xSrxCoO3 and La2-xSrxLi0.5Co0.5O4 using X-ray absorption near-edge structure spectroscopy at both the O-K and Co-L-2.3 thresholds. In the La2-xSrxLi0.5Co0.5O4 system the CoO6 octahedra are isolated, the holes induced by Sr doping are trapped in the isolated Co(IV)O-6 octahedra, and a low-spin state is found for the Co ions, which does not change upon Sr doping. In the La1-xSrxCoO3 system, the interconnected CoO6 octahedra, with a 180degrees Co-O-Co bond angle, give rise to a transition from low-spin to intermediate-spin state with a ferromagnetic alignment of the Co spins. The double-exchange, ferromagnetic coupling between Co ions mediated by the 180degrees bond angle is responsible for suppressing the low spin-state. We find that the branching ratio of spectral intensities at the L-2 and L-3 thresholds in the Co-L-2.3 X-ray absorption spectra is sensitive to the spin state of the Co ions allowing its direct spectroscopic determination. (C) 2002 Published by Elsevier Science B.V.
Resumo:
Low-spin (LS) to intermediate-spin (IS) state transitions in crystals of LnCoO3 (Ln=La, Pr and Nd) have been investigated by variable temperature infrared spectroscopy. The spectra reveal the occurrence of the transition around 120, 220 and 275 K, respectively, in LaCoO3,PrCoO3 and NdCoO3, at which temperatures the intensities of the stretching and the bending modes associated with the LS state decrease, accompanied by an increase in the intensities of the bands due to IS state. The characteristic frequencies of both the spin states decrease with increase in temperature, showing anomalies around the transition.
Resumo:
Low-spin (LS) to intermediate-spin (IS) state transitions in crystals of LnCoO(3) (Ln = La, Pr and Nd) have been investigated by variable temperature infrared spectroscopy. The spectra reveal the occurrence of the transition around 120, 220 and 275 K, respectively, in LaCoO3,PrCoo(3) and NdCoO3, at which temperatures the intensities of the stretching and the bending modes associated with the LS state decrease, accompanied by an increase in the intensities of the bands due to IS state. The characteristic frequencies of both the spin states decrease with increase in temperature, showing anomalies around the transition. (C) 2001 Published by Elsevier Science B.V.