955 resultados para Speed of light
Resumo:
In Bohmian mechanics, a version of quantum mechanics that ascribes world lines to electrons, we can meaningfully ask about an electron's instantaneous speed relative to a given inertial frame. Interestingly, according to the relativistic version of Bohmian mechanics using the Dirac equation, a massive particle's speed is less than or equal to the speed of light, but not necessarily less. That is, there are situations in which the particle actually reaches the speed of light-a very nonclassical behavior. That leads us to the question of whether such situations can be arranged experimentally. We prove a theorem, Theorem 5, implying that for generic initial wave functions the probability that the particle ever reaches the speed of light, even if at only one point in time, is zero. We conclude that the answer to the question is no. Since a trajectory reaches the speed of light whenever the quantum probability current (psi) over bar gamma(mu)psi is a lightlike 4-vector, our analysis concerns the current vector field of a generic wave function and may thus be of interest also independently of Bohmian mechanics. The fact that the current is never spacelike has been used to argue against the possibility of faster-than-light tunneling through a barrier, a somewhat similar question. Theorem 5, as well as a more general version provided by Theorem 6, are also interesting in their own right. They concern a certain property of a function psi : R(4) -> C(4) that is crucial to the question of reaching the speed of light, namely being transverse to a certain submanifold of C(4) along a given compact subset of space-time. While it follows from the known transversality theorem of differential topology that this property is generic among smooth functions psi : R(4) -> C(4), Theorem 5 asserts that it is also generic among smooth solutions of the Dirac equation. (C) 2010 American Institute of Physics. [doi:10.1063/1.3520529]
Resumo:
By exploring the relationship between the propagation of electromagnetic waves in a gravitational field and the light propagation in a refractive medium, it is shown that, in the presence of a positive cosmological constant, the velocity of light will be smaller than its special relativity value. Then, restricting again to the domain of validity of geometrical optics, the same result is obtained in the context of wave optics. It is argued that this phenomenon and the anisotropy in the velocity of light in a gravitational field are produced by the same mechanism.
Resumo:
The subject of the presented thesis is the accurate measurement of time dilation, aiming at a quantitative test of special relativity. By means of laser spectroscopy, the relativistic Doppler shifts of a clock transition in the metastable triplet spectrum of ^7Li^+ are simultaneously measured with and against the direction of motion of the ions. By employing saturation or optical double resonance spectroscopy, the Doppler broadening as caused by the ions' velocity distribution is eliminated. From these shifts both time dilation as well as the ion velocity can be extracted with high accuracy allowing for a test of the predictions of special relativity. A diode laser and a frequency-doubled titanium sapphire laser were set up for antiparallel and parallel excitation of the ions, respectively. To achieve a robust control of the laser frequencies required for the beam times, a redundant system of frequency standards consisting of a rubidium spectrometer, an iodine spectrometer, and a frequency comb was developed. At the experimental section of the ESR, an automated laser beam guiding system for exact control of polarisation, beam profile, and overlap with the ion beam, as well as a fluorescence detection system were built up. During the first experiments, the production, acceleration and lifetime of the metastable ions at the GSI heavy ion facility were investigated for the first time. The characterisation of the ion beam allowed for the first time to measure its velocity directly via the Doppler effect, which resulted in a new improved calibration of the electron cooler. In the following step the first sub-Doppler spectroscopy signals from an ion beam at 33.8 %c could be recorded. The unprecedented accuracy in such experiments allowed to derive a new upper bound for possible higher-order deviations from special relativity. Moreover future measurements with the experimental setup developed in this thesis have the potential to improve the sensitivity to low-order deviations by at least one order of magnitude compared to previous experiments; and will thus lead to a further contribution to the test of the standard model.
Resumo:
It is shown theoretically that an optical bottle resonator with a nanoscale radius variation can perform a multinanosecond long dispersionless delay of light in a nanometer-order bandwidth with minimal losses. Experimentally, a 3 mm long resonator with a 2.8 nm deep semiparabolic radius variation is fabricated from a 19??µm radius silica fiber with a subangstrom precision. In excellent agreement with theory, the resonator exhibits the impedance-matched 2.58 ns (3 bytes) delay of 100 ps pulses with 0.44??dB/ns intrinsic loss. This is a miniature slow light delay line with the record large delay time, record small transmission loss, dispersion, and effective speed of light.
Resumo:
It is shown theoretically that an optical bottle resonator with a nanoscale radius variation can perform a multinanosecond long dispersionless delay of light in a nanometer-order bandwidth with minimal losses. Experimentally, a 3 mm long resonator with a 2.8 nm deep semiparabolic radius variation is fabricated from a 19??µm radius silica fiber with a subangstrom precision. In excellent agreement with theory, the resonator exhibits the impedance-matched 2.58 ns (3 bytes) delay of 100 ps pulses with 0.44??dB/ns intrinsic loss. This is a miniature slow light delay line with the record large delay time, record small transmission loss, dispersion, and effective speed of light.
Resumo:
Quantum mechanics, optics and indeed any wave theory exhibits the phenomenon of interference. In this thesis we present two problems investigating interference due to indistinguishable alternatives and a mostly unrelated investigation into the free space propagation speed of light pulses in particular spatial modes. In chapter 1 we introduce the basic properties of the electromagnetic field needed for the subsequent chapters. In chapter 2 we review the properties of interference using the beam splitter and the Mach-Zehnder interferometer. In particular we review what happens when one of the paths of the interferometer is marked in some way so that the particle having traversed it contains information as to which path it went down (to be followed up in chapter 3) and we review Hong-Ou-Mandel interference at a beam splitter (to be followed up in chapter 5). In chapter 3 we present the first of the interference problems. This consists of a nested Mach-Zehnder interferometer in which each of the free space propagation segments are weakly marked by mirrors vibrating at different frequencies [1]. The original experiment drew the conclusions that the photons followed disconnected paths. We partition the description of the light in the interferometer according to the number of paths it contains which-way information about and reinterpret the results reported in [1] in terms of the interference of paths spatially connected from source to detector. In chapter 4 we briefly review optical angular momentum, entanglement and spontaneous parametric down conversion. These concepts feed into chapter 5 in which we present the second of the interference problems namely Hong-Ou-Mandel interference with particles possessing two degrees of freedom. We analyse the problem in terms of exchange symmetry for both boson and fermion pairs and show that the particle statistics at a beam splitter can be controlled for suitably chosen states. We propose an experimental test of these ideas using orbital angular momentum entangled photons. In chapter 6 we look at the effect that the transverse spatial structure of the mode that a pulse of light is excited in has on its group velocity. We show that the resulting group velocity is slower than the speed of light in vacuum for plane waves and that this reduction in the group velocity is related to the spread in the wave vectors required to create the transverse spatial structure. We present experimental results of the measurement of this slowing down using Hong-Ou-Mandel interference.
Resumo:
National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.
Resumo:
Purpose: To investigate the effects of light filters on reading speed in normal and low vision due to age-related macular degeneration (AMD). Methods: Reading speed was determined for 12 subjects with normal vision and 12 subjects with non-exudative AMD using stationary lowercase nonsensical print in Times Roman font and four light filters; a yellow Corning Photochromic Filter (CPF) 450, a grey neural density (ND) filter, an individual filter obtained using the Intuitive Colorimeter® and a clear filter. Results: There was no statistically significant light filter effect on reading speed for the normal subjects. The AMD group demonstrated a statistically significant 5% average improvement in reading speed with the CPF450 compared with the other filters although some AMD subjects had improvements of 10-15%. Conclusions: Light filters obtained using the Intuitive Colorimeter® performed poorly when compared with the CPF450, ND and clear filters for both the study groups. For the AMD group, average reading speed was statistically greater with the CPF450 than the other filters, however it is questionable whether the improvement (5%) would be clinically significant. As some of the subjects with AMD had greater improvements with the CPF450 we advocate clinical assessment of light filters using existing protocols on an individual basis. © 2004 The College of Optometrists.
Resumo:
This paper proposes a new reconstruction method for diffuse optical tomography using reduced-order models of light transport in tissue. The models, which directly map optical tissue parameters to optical flux measurements at the detector locations, are derived based on data generated by numerical simulation of a reference model. The reconstruction algorithm based on the reduced-order models is a few orders of magnitude faster than the one based on a finite element approximation on a fine mesh incorporating a priori anatomical information acquired by magnetic resonance imaging. We demonstrate the accuracy and speed of the approach using a phantom experiment and through numerical simulation of brain activation in a rat's head. The applicability of the approach for real-time monitoring of brain hemodynamics is demonstrated through a hypercapnic experiment. We show that our results agree with the expected physiological changes and with results of a similar experimental study. However, by using our approach, a three-dimensional tomographic reconstruction can be performed in ∼3 s per time point instead of the 1 to 2 h it takes when using the conventional finite element modeling approach
Resumo:
The purpose of this study was to evaluate the effectiveness of different light-curing units on the bond strength (push-out) of glass fiber posts in the different thirds of the root (cervical, middle and apical) with different adhesive luting resin systems (dual-cure total-etch; dual-cured and self-etch bonding system; and dual-cure self-adhesive cements), Disks of the samples (n = 144) were used, with approximately 1 mm of thickness of 48 bovine roots restored with glass fiber posts, that were luted with resin cements photo-activated by halogen LCU (QTH, Optilux 501) and blue LED (Ultraled), with power densities of 600 and 550 mW/cm(2), respectively. A universal testing machine (MTS 810 Material Test System) was used with a 1 mm diameter steel rod at cross-head speed of 0.5 mm/min until post extrusion, with load cell of 50 kg, for evaluation of the push-out strength in the different thirds of each sample. The push-out strength values in kgf were converted to MPa and analyzed through Analysis of Variance and Tukey`s test, at significance level of 5%. The results showed that there were no statistical differences between the QTH and LED LCUs. The self-adhesive resin cement had lower values of retention. The total-etch and self-adhesive system resin cements seem to be a possible alternative for glass fiber posts cementation into the radicular canal and the LED LCU can be applied as an alternative to halogen light on photo-activation of dual-cured resin cements.
Resumo:
The purpose of this study was to evaluate the effectiveness of different light-curing units on the bond strength (push-out) of glass fiber posts in the different thirds of the root (cervical, middle and apical) with different adhesive luting resin systems (dual-cure total-etch; dual-cured and self-etch bonding system; and dual-cure self-adhesive cements), Disks of the samples (n = 144) were used, with approximately 1 mm of thickness of 48 bovine roots restored with glass fiber posts, that were luted with resin cements photo-activated by halogen LCU (QTH, Optilux 501) and blue LED (Ultraled), with power densities of 600 and 550 mW/cm 2, respectively. A universal testing machine (MTS 810 Material Test System) was used with a 1 mm diameter steel rod at cross-head speed of 0.5 mm/min until post extrusion, with load cell of 50 kg, for evaluation of the push-out strength in the different thirds of each sample. The push-out strength values in kgf were converted to MPa and analyzed through Analysis of Variance and Tukey's test, at significance level of 5%. The results showed that there were no statistical differences between the QTH and LED LCUs. The self-adhesive resin cement had lower values of retention. The total-etch and self-adhesive system resin cements seem to be a possible alternative for glass fiber posts cementation into the radicular canal and the LED LCU can be applied as an alternative to halogen light on photo-activation of dual-cured resin cements. © 2009 Pleiades Publishing, Ltd.
Resumo:
Includes bibliography
Resumo:
Background: As light-emitting diodes become more common as the light source for low vision aids, the effect of illumination colour temperature on magnifier reading performance was investigated. Methods: Reading ability (maximum reading speed, critical print size, threshold near visual acuity) using Radner charts and subjective preference was assessed for 107 participants with visual impairment using three stand magnifiers with light emitting diode illumination colour temperatures of 2,700 K, 4,500 K and 6,000 K. The results were compared with distance visual acuity, prescribed magnification, age and the primary cause of visual impairment. Results: Reading speed, critical print size and near visual acuity were unaffected by illumination colour temperature (p > 0.05). Reading metrics decreased with worsening acuity and higher levels of prescribed magnification but acuity was unaffected by age. Each colour temperature was preferred and disliked by a similar number of patients and was unrelated to distance visual acuity, prescribed magnification and age (p > 0.05). Patients had better near acuity (p = 0.002), critical print size (p = 0.034) and maximum reading speed (p <0.001), and the improvement in near from distance acuity was greater (p = 0.004) with their preferred rather than least-liked colour temperature illumination. Conclusion: A range of colour temperature illuminations should be offered to all visually impaired individuals prescribed with an optical magnifier for near tasks to optimise subjective and objective benefits.
Resumo:
This thesis describes advances in the characterisation, calibration and data processing of optical coherence tomography (OCT) systems. Femtosecond (fs) laser inscription was used for producing OCT-phantoms. Transparent materials are generally inert to infra-red radiations, but with fs lasers material modification occurs via non-linear processes when the highly focused light source interacts with the materials. This modification is confined to the focal volume and is highly reproducible. In order to select the best inscription parameters, combination of different inscription parameters were tested, using three fs laser systems, with different operating properties, on a variety of materials. This facilitated the understanding of the key characteristics of the produced structures with the aim of producing viable OCT-phantoms. Finally, OCT-phantoms were successfully designed and fabricated in fused silica. The use of these phantoms to characterise many properties (resolution, distortion, sensitivity decay, scan linearity) of an OCT system was demonstrated. Quantitative methods were developed to support the characterisation of an OCT system collecting images from phantoms and also to improve the quality of the OCT images. Characterisation methods include the measurement of the spatially variant resolution (point spread function (PSF) and modulation transfer function (MTF)), sensitivity and distortion. Processing of OCT data is a computer intensive process. Standard central processing unit (CPU) based processing might take several minutes to a few hours to process acquired data, thus data processing is a significant bottleneck. An alternative choice is to use expensive hardware-based processing such as field programmable gate arrays (FPGAs). However, recently graphics processing unit (GPU) based data processing methods have been developed to minimize this data processing and rendering time. These processing techniques include standard-processing methods which includes a set of algorithms to process the raw data (interference) obtained by the detector and generate A-scans. The work presented here describes accelerated data processing and post processing techniques for OCT systems. The GPU based processing developed, during the PhD, was later implemented into a custom built Fourier domain optical coherence tomography (FD-OCT) system. This system currently processes and renders data in real time. Processing throughput of this system is currently limited by the camera capture rate. OCTphantoms have been heavily used for the qualitative characterization and adjustment/ fine tuning of the operating conditions of OCT system. Currently, investigations are under way to characterize OCT systems using our phantoms. The work presented in this thesis demonstrate several novel techniques of fabricating OCT-phantoms and accelerating OCT data processing using GPUs. In the process of developing phantoms and quantitative methods, a thorough understanding and practical knowledge of OCT and fs laser processing systems was developed. This understanding leads to several novel pieces of research that are not only relevant to OCT but have broader importance. For example, extensive understanding of the properties of fs inscribed structures will be useful in other photonic application such as making of phase mask, wave guides and microfluidic channels. Acceleration of data processing with GPUs is also useful in other fields.
Resumo:
The main objective of the research is to demonstrate new physiological characteristics receptors in the presence of mosquito larvae. 100 larvae of different species were collected and studied for a week in periods of 8-24 hrs. Larvae stages I, II, III and IV have photo-thermo receptors of light and heat housed in the body is divided into head, thorax and abdomen, perceive hot or cold environments, and have fibers in chest or hairs lining your body or abdomen, and a pair of antennae on the head. Stages II and III are more developed than the initial stages. They are attracted by the dark green at the bottom, a pair of eyes that perceive light and color. Have receptors proteins (RP55) that capture motion at a speed the slightest movement of waves in the water. Its nose is not well developed but have chemoreceptors. They adapt to changes in pH in alkaline media, are sensitive to chemical, thermal and mechanical changes nociceptors have electroreceptors or galvanoreceptores sensitive to electrical stimuli, have mechanoreceptors that are sensitive to touch, pain, pressure, gravity, sound. They have a GPS position that seems the guides. It is precisely in the fibers, mushrooms or bristles are recipients along with the micro villi in head, thorax and abdomen.
RESUMEN
El objetivo principal de la investigación es demostrar nuevas características fisiológicas como la presencia de receptores en las larvas de mosquitos. Se recolectaron 100 larvas de diferentes especies y se estudiaron por una semana en periodos de 8 a 24 hrs. Las larvas de los estadios I,II,III y IV tienen foto-termo receptores de luz y calor alojados en el cuerpo que se divide en cabeza, tórax y abdomen, perciben ambientes fríos o calientes, así como tienen fibras en tórax o pelos que recubren su cuerpo, y un par de antenas en la cabeza. Los estadios II y III son más desarrollados que las etapas iniciales. Tienen receptores proteicos RP55. Les atrae el color verde oscuro en el fondo, un par de ojos que perciben la luz y color con fotoreceptores. Tienen receptores RP55 de movimiento que captan a una velocidad el más mínimo movimiento de ondas en el agua. Su olfato no está muy desarrollado pero tienen quimioreceptores. Se adaptan a cambios de pH en medios alcalinos, tienen nociceptores sensibles a cambios químicos, térmicos y mecánicos, tienen galvanoreceptores o electroreceptores sensibles a estímulos eléctricos, tienen mecanoreceptores que son sensibles al tacto, dolor, presión gravedad, sonido. Tienen un GPS de posición que pareciera las orienta.