924 resultados para Speed of displacement
Resumo:
Mode of access: Internet.
Resumo:
This thesis investigates Theatre for Young People (TYP) as a site of performance innovation. The inquiry is focused on contemporary dramaturgy and its fieldwork aims to identify new dramaturgical principles operating in the creation and presentation of TYP. The research then seeks to assess how these new principles contribute to Postdramatic Theatre theory. This research inquiry springs from an imperative based in practice: Young people under 25 years have a literacy based on online hypertextual experiences which take the reader outside the frames of a dramatic narrative and beyond principles such as linearity, dramatic unity, teleology and resolution. As a dramaturg and educator I wanted to understand the new ways that young people engage in cultural products, to identify and utilize the new principles of dramaturgy that are now in evidence. My research examines how two playwright/directors approach their work and the new principles that can be identified in their dramaturgy. The fieldwork is scoped into two case studies: the first on TJ Eckleberg working in Australian Theatre for Young People and the second on Kristo Šagor working in German Children’s and Young People’s Theatre (KJT). These case studies address both types of production dramaturgy - the dramaturgy emergent through process in devised performance making, and that emergent in a performance based on a written playscript. On Case Study One the researcher, as participant observer, worked as production dramaturg on a large scale, site specific performance, observing the dramaturgy in process of its director and chief devisor. On Case Study Two the researcher, as observer and analyst, undertook a performance analysis of three playscripts and productions by a contemporary German playwright and director. Utilizing participant observation, reflective practice and grounded analysis the case studies have identified two new principles animating the dramaturgy of these TYP practitioners, namely ‘displacement’ and ‘installation.’ Taking practice into theory, the thesis concludes by demonstrating how displacement and installation contribute to Postdramatic Theatre’s “arsenal of expressive gestures which serve as theatre’s response to changed social communication under the conditions of generalized communication technologies” (Lehmann, H.-T., 2006, p.23). This research makes an original contribution to knowledge by evidencing that the principles of Postdramatic Theory lie within the practice of contemporary Theatre for Young People. It also contributes valuable research to a specialized, often overlooked terrain, namely Dramaturgy in Theatre for Young People, presented here with a contemporary, international and intercultural perspective.
Resumo:
Axial acoustic wave propagation has been widely used in evaluating the mechanical properties of human bone in vivo. However, application of this technique to monitor soft tissues, such as tendon, has received comparatively little scientific attention. Laboratory-based research has established that axial acoustic wave transmission is not only related to the physical properties of equine tendon but is also proportional to tensile load to which it is exposed (Miles et al., 1996; Pourcelot et al., 2005). The reproducibility of the technique for in vivo measurements in human tendon, however, has not been established. The aim of this study was to evaluate the limits of agreement for repeated measures of the speed of sound (SoS) in human Achilles tendon in vivo. Methods: A custom built ultrasound device, consisting of an A-mode 1MHz emitter and two regularly spaced receivers, was used to measure the SoS in the mid-portion of the Achilles tendon in ten healthy males and ten females (mean age: 33.8 years, range 23-56 yrs; height: 1.73±0.08 m; weight: 68.4±15.3 kg). The emitter and receivers were held at fixed positions by a polyethylene frame and maintained in close contact with the skin overlying the tendon by means of elasticated straps. Repeated SoS measurements were taken with the subject prone (non-weightbearing and relaxed Achilles tendon) and during quiet bipedal and unipedal stance. In each instance, the device was detached and repositioned prior to measurement. Results: Limits of agreement for repeated SoS measures during non-weightbearing and bipedal and unipedal stance were ±53, ±28 and ±21 m/s, respectively. The average SoS in the non-weightbearing Achilles tendon was 1804±198 m/s. There was a significant increase in the average SoS during bilateral (2122±135 m/s) (P < 0.05) and unilateral (2221±79 m/s) stance (P < 0.05). Conclusions: Repeated SoS measures in human Achilles tendon were more reliable during stance than under non-weightbearing conditions. These findings are consistent with previous research in equine tendon in which lower variability in SoS was observed with increasing tensile load (Crevier-Denoix et al, 2009). Since the limits of agreement for Achilles tendon SoS are nearly 5% of the changes previously observed during walking and therapeutic heel raise exercises, acoustic wave transmission provides a promising new non-invasive method for determining tendon properties during sports and rehabilitation related activities.
Resumo:
The promise of ‘big data’ has generated a significant deal of interest in the development of new approaches to research in the humanities and social sciences, as well as a range of important critical interventions which warn of an unquestioned rush to ‘big data’. Drawing on the experiences made in developing innovative ‘big data’ approaches to social media research, this paper examines some of the repercussions for the scholarly research and publication practices of those researchers who do pursue the path of ‘big data’–centric investigation in their work. As researchers import the tools and methods of highly quantitative, statistical analysis from the ‘hard’ sciences into computational, digital humanities research, must they also subscribe to the language and assumptions underlying such ‘scientificity’? If so, how does this affect the choices made in gathering, processing, analysing, and disseminating the outcomes of digital humanities research? In particular, is there a need to rethink the forms and formats of publishing scholarly work in order to enable the rigorous scrutiny and replicability of research outcomes?
Resumo:
An important aspect of robotic path planning for is ensuring that the vehicle is in the best location to collect the data necessary for the problem at hand. Given that features of interest are dynamic and move with oceanic currents, vehicle speed is an important factor in any planning exercises to ensure vehicles are at the right place at the right time. Here, we examine different Gaussian process models to find a suitable predictive kinematic model that enable the speed of an underactuated, autonomous surface vehicle to be accurately predicted given a set of input environmental parameters.
Resumo:
Typically, the walking ability of individuals with a transfemoral amputation (TFA) can be represented by the speed of walking (SofW) obtained in experimental settings. Recent developments in portable kinetic systems allow assessing the level of activity of TFA during actual daily living outside the confined space of a gait lab. Unfortunately, only minimal spatio-temporal characteristics could be extracted from the kinetic data including the cadence and the duration on gait cycles. Therefore, there is a need for a way to use some of these characteristics to assess the instantaneous speed of walking during daily living. The purpose of the study was to compare several methods to determine SofW using minimal spatial gait characteristics.
Resumo:
Effectively capturing opportunities requires rapid decision-making. We investigate the speed of opportunity evaluation decisions by focusing on firms' venture termination and venture advancement decisions. Experience, standard operating procedures, and confidence allow firms to make opportunity evaluation decisions faster; we propose that a firm's attentional orientation, as reflected in its project portfolio, limits the number of domains in which these speed-enhancing mechanisms can be developed. Hence firms' decision speed is likely to vary between different types of decisions. Using unique data on 3,269 mineral exploration ventures in the Australian mining industry, we find that firms with a higher degree of attention toward earlier-stage exploration activities are quicker to abandon potential opportunities in early development but slower to do so later, and that such firms are also slower to advance on potential opportunities at all stages compared to firms that focus their attention differently. Market dynamism moderates these relationships, but only with regard to initial evaluation decisions. Our study extends research on decision speed by showing that firms are not necessarily fast or slow regarding all the decisions they make, and by offering an opportunity evaluation framework that recognizes that decision makers can, in fact often do, pursue multiple potential opportunities simultaneously.
Resumo:
A key component of robotic path planning is ensuring that one can reliably navigate a vehicle to a desired location. In addition, when the features of interest are dynamic and move with oceanic currents, vehicle speed plays an important role in the planning exercise to ensure that vehicles are in the right place at the right time. Aquatic robot design is moving towards utilizing the environment for propulsion rather than traditional motors and propellers. These new vehicles are able to realize significantly increased endurance, however the mission planning problem, in turn, becomes more difficult as the vehicle velocity is not directly controllable. In this paper, we examine Gaussian process models applied to existing wave model data to predict the behavior, i.e., velocity, of a Wave Glider Autonomous Surface Vehicle. Using training data from an on-board sensor and forecasting with the WAVEWATCH III model, our probabilistic regression models created an effective method for forecasting WG velocity.
Resumo:
Displacement-amplifying compliant mechanisms (DaCMs) reported in literature are mostly used for actuator applications. This paper considers them for sensor applications that rely on displacement measurement, and evaluates them objectively. The main goal is to increase the sensitivity under constraints imposed by several secondary requirements and practical constraints. A spring-mass-lever model that effectively captures the addition of a DaCM to a sensor is used in comparing eight DaCMs. We observe that they significantly differ in performance criteria such as geometric advantage, stiffness, natural frequency, mode amplification, factor of safety against failure, cross-axis stiffness, etc., but none excel in all. Thus, a combined figure of merit is proposed using which the most suitable DaCM could be selected for a sensor application. A case-study of a micro machined capacitive accelerometer and another case-study of a vision-based force sensor are included to illustrate the general evaluation and selection procedure of DaCMs with specific applications. Some other insights gained with the analysis presented here were the optimum size-scale for a DaCM, the effect on its natural frequency, limits on its stiffness, and working range of the sensor.
Resumo:
In this work, possibility of simulating biological organs in realtime using the Boundary Element Method (BEM) is investigated. Biological organs are assumed to follow linear elastostatic material behavior, and constant boundary element is the element type used. First, a Graphics Processing Unit (GPU) is used to speed up the BEM computations to achieve the realtime performance. Next, instead of the GPU, a computer cluster is used. Results indicate that BEM is fast enough to provide for realtime graphics if biological organs are assumed to follow linear elastostatic material behavior. Although the present work does not conduct any simulation using nonlinear material models, results from using the linear elastostatic material model imply that it would be difficult to obtain realtime performance if highly nonlinear material models that properly characterize biological organs are used. Although the use of BEM for the simulation of biological organs is not new, the results presented in the present study are not found elsewhere in the literature.