868 resultados para Speed Countercurrent Chromatography
Resumo:
High-speed countercurrent chromatography (HSCCC) is a leading method for the fast separation of natural products from plants. It was used for the preparative isolation of two flavone monoglucosides present in the capitula of Eriocaulon ligulatum (Veil.) L.B.Smith (Eriocaulaceae). This species, known locally as botão-dourado, is exported to Europe, Japan and North America as an ornamental species, constituting an important source of income for the local population of Minas Gerais State, Brazil. The solvent system, optimized in tests prior to the HSCCC run, consisted of the two phases of the mixture ethyl acetate: n-propanol: water (140:8:80, v/v/v), which led to the successful separation of 6-methoxyluteolin-7-O-β-D-allopyranoside and 6-methoxyapigenin-7-O-β-D-allopyranoside in only 3 hours. The two flavonoids were identified by NMR (1-D and 2-D) and ESI-MS, comparing their spectra with published data.
Separation of the toxic zierin from Zollernia ilicifolia by high speed countercurrent chromatography
Resumo:
Preliminary pharmacological assays of the 70% methanol extract from the leaves of the Brazilian medicinal plant Zollernia ilicifolia Vog. (Fabaceae) showed analgesic and antiulcerogenic effects. Previous analyses have shown that this extract contains, besides flavonoid glycosides and saponins, a toxic cyanogenic glycoside. Flavonoids and saponins are compounds reported in literature with antiulcerogenic activity. In this work, we developed a methodology to separate the cyanogenic glycoside from these compounds in order to obtain enough amount of material to perform pharmacological assays. The cyanogenic glycoside zierin (2S)-β-D-glucopyranosyloxy-(3-hydroxy-phenyl)- acetonitrile was separated from the other components by high speed countercurrent chromatography (HSCCC). The solvent system used was composed of chloroform-methanol-n-propanol-water (5:6:1:4, v/v/v/v). This technique led to the separation of zierin from the possible active compounds of Zollernia ilicifolia.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica
Resumo:
A general procedure was developed for the simultaneous separation of flavonoids and naphthopyrones from the polar extracts of the capitula from Brazilian everlasting plants is described. The ethanolic extracts of several species from the Paepalanthus genus (Eriocaulaceae) were fractionated by droplet countercurrent chromatography followed by column chromatography on pvp and sephadex LH-20. The isolated compounds were identified by spectrometric analysis and comparison with literature data. This approach led to the isolation of 9-O-β-D-glucopyranosylpaepalantine (1), 9-O-β-D-glucopyranosyl (1→6)allopyranosylpaepalantine (2), along with the flavonoids 6-methoxykaempferol (3), 3-O-β-D-glucopyranosyl-6-methoxykaempferol (4), patuletin (5), 3-Oβ-D-rutinosylpatuletin (6), 7-O-β-D-glucopyranosylquercetagetin (7), 5,7,4'-trihydroxy-6,3'-dimethoxyflavone (8) and 5,7,4'-trihydroxy-6,3'-dimethoxyflavonol (9).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
As part of a 4-year project to study phenolic compounds in tea shoots over the growing seasons and during black tea processing in Australia, an HPLC method was developed and optimised for the identification and quantification of phenolic compounds, mainly flavanols and phenolic acids, in fresh tea shoots. Methanol proved to be the most suitable solvent for extracting the phenolic compounds, compared with chloroform, ethyl acetate and water. Immediate analysis, by HPLC, of the methanol extract showed higher separation efficiency than analyses after being dried and redissolved. This method exhibited good repeatability (CV 3-9%) and recovery rate (88-116%). Epigallocatechin gallate alone constituted up to 115 mg/g, on a dry basis, in the single sample of Australian fresh tea shoots examined. Four catechins (catechin, gallocatechin, epicatechin and epigallocatechin) and six catechin gallates (epigallocatechin gallate, catechin gallate, epicatechin gallate, gallocatechin gallate, epicatechin digallate and epigallocatechin digallate) have been identified and quantified by this HPLC method. In addition, two major tea alkaloids, caffeine and theobromine, have been quantified, while five flavonol glycosides and six phenolic acids, including quinic acids and esters, were identified and quantified. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
A thesis submitted for the degree of Doctor of Philosophy
Resumo:
Managing schizophrenia has never been a trivial matter. Furthermore, while classical antipsychotics induce extrapyramidal side effects and hyperprolactinaemia, atypical antipsychotics lead to diabetes, hyperlipidaemia, and weight gain. Moreover, even with newer drugs, a sizable proportion of patients do not show significant improvement. Alstonine is an indole alkaloid identified as the major component of a plant-based remedy used in Nigeria to treat the mentally ill. Alstonine presents a clear antipsychotic profile in rodents, apparently with differential effects in distinct dopaminergic pathways. The aim of this study was to complement the antipsychotic profile of alstonine, verifying its effects on brain amines in mouse frontal cortex and striatum. Additionally, we examined if alstonine induces some hormonal and metabolic changes common to antipsychotics. HPLC data reveal that alstonine increases serotonergic transmission and increases intraneuronal dopamine catabolism. In relation to possible side effects, preliminary data suggest that alstonine does not affect prolactin levels, does not induce gains in body weight, but prevents the expected fasting-induced decrease in glucose levels. Overall, this study reinforces the proposal that alstonine is a potential innovative antipsychotic, and that a comprehensive understanding of its neurochemical basis may open new avenues to developing newer antipsychotic medications.
Resumo:
Droplet countercurrent chromatography and high-performance liquid chromatography fractionation of the aqueous infusion from Maytenus aquifolium Martius leaves afforded two flavonoid tetrasaccharides: quercetin 3-O-alpha-L-rhamnopyranosyl(1-->6)-O-[beta-D-glucopyranosyl(1-->3)-O-alpha-L-rhamnopranosyl( 1-->2)-O-beta-D-galactopyranoside and kaempferol 3-O-alpha-L-rhamnopyranosyl(1-->6)-O-[beta-D-glucopyranosyl( 1-->3)-O-alpha-L-rhamnopyranosy(1-->2-2)-O-beta-D-galactopyranoside. All structures were elucidated by spectroscopic methods. Pharmacological essays of the infusion showed antiulcer activity in rats.
Resumo:
Nowadays microfluidic is becoming an important technology in many chemical and biological processes and analysis applications. The potential to replace large-scale conventional laboratory instrumentation with miniaturized and self-contained systems, (called lab-on-a-chip (LOC) or point-of-care-testing (POCT)), offers a variety of advantages such as low reagent consumption, faster analysis speeds, and the capability of operating in a massively parallel scale in order to achieve high-throughput. Micro-electro-mechanical-systems (MEMS) technologies enable both the fabrication of miniaturized system and the possibility of developing compact and portable systems. The work described in this dissertation is towards the development of micromachined separation devices for both high-speed gas chromatography (HSGC) and gravitational field-flow fractionation (GrFFF) using MEMS technologies. Concerning the HSGC, a complete platform of three MEMS-based GC core components (injector, separation column and detector) is designed, fabricated and characterized. The microinjector consists of a set of pneumatically driven microvalves, based on a polymeric actuating membrane. Experimental results demonstrate that the microinjector is able to guarantee low dead volumes, fast actuation time, a wide operating temperature range and high chemical inertness. The microcolumn consists of an all-silicon microcolumn having a nearly circular cross-section channel. The extensive characterization has produced separation performances very close to the theoretical ideal expectations. A thermal conductivity detector (TCD) is chosen as most proper detector to be miniaturized since the volume reduction of the detector chamber results in increased mass and reduced dead volumes. The microTDC shows a good sensitivity and a very wide dynamic range. Finally a feasibility study for miniaturizing a channel suited for GrFFF is performed. The proposed GrFFF microchannel is at early stage of development, but represents a first step for the realization of a highly portable and potentially low-cost POCT device for biomedical applications.
Resumo:
The natural naphthopyranones paepalantine (1), paepalantine-9O-β-D-glucopyranoside (2) and paepalantine-9-O-β-D-allopyranosyl-(1→6)-O-β-D-glucopyranoside (3) were separated in a preparative scale from the ethanolic extract of the capitula of Paepalanthus bromelioides by high-speed counter-current chromatography (HSCCC). The solvent system used was composed of water-ethanol-ethyl acetate-hexane (10:4:10:4, v/v/v/v). This technique led to the separation of the three different naphthopyranone glycosides in pure form in approximately 7 hours. Paepalantine showed a good antioxidant activity when assayed by the DPPH radical spectrophotometric assay.