964 resultados para Spectrum analysis
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Coherent anti-Stokes Raman scattering is the powerful method of laser spectroscopy in which significant successes are achieved. However, the non-linear nature of CARS complicates the analysis of the received spectra. The objective of this Thesis is to develop a new phase retrieval algorithm for CARS. It utilizes the maximum entropy method and the new wavelet approach for spectroscopic background correction of a phase function. The method was developed to be easily automated and used on a large number of spectra of different substances.. The algorithm was successfully tested on experimental data.
Resumo:
Coherent anti-Stokes Raman scattering (CARS) microscopy is rapidly developing into a unique microscopic tool in biophysics, biology and the material sciences. The nonlinear nature of CARS spectroscopy complicates the analysis of the received spectra. There were developed mathematical methods for signal processing and for calculations spectra. Fourier self-deconvolution is a special high pass FFT filter which synthetically narrows the effective trace bandwidth features. As Fourier self-deconvolution can effectively reduce the noise, which may be at a higher spatial frequency than the peaks, without losing peak resolution. The idea of the work is to experiment the possibility of using wavelet decomposition in spectroscopic for background and noise removal, and Fourier transformation for linenarrowing.
Resumo:
One of the goals of EU BASIN is to understand variability in production across the Atlantic and the impact of this variability on higher trophic levels. One aspect of these investigations is to examine the biomes defined by Longhurst (2007). These biomes are largely based on productivity measured with remote sensing. During MSM 26, mesopelagic fish and size-spectrum data were collected to test the biome classifications of the north Atlantic. In most marine systems, the size-spectrum is a decay function with more, smaller organisms and fewer larger organisms. The intercept of the size-spectrum has been linked to overall productivity while the slope represents the "rate of decay" of this productivity (Zhou 2006, doi:10.1093/plankt/fbi119). A Laser In-Situ Scattering Transmissometer was used to collect size-spectrum data and net collections were made to capture mesopelagic fish. The relationship among the mesopelagic fish size and abundance distributions will be compared to the estimates of production from the size-spectrum data to evaluate the biomes of the stations occupied during MSM 26.
Resumo:
A Laser In-Situ Scattering Transmissometer (LISST) was used to collect vertical distribution data of particles from 2.5 to 500 µm in size. The LISST uses a multi-ring detector to measure scattering light of particles from a laser diode. Particles are classified into 32 log-spaced bins and the concentration of each bin is calculated as micro-liters per liter (µl/l). The instrument is rated to a depth of 300 m, and also records temperature and pressure. The sample interval was set to record every second. The LISST was attached to the LOPC frame to conduct casts and allow for particle-size comparisons between the two instruments. The LOPC is rated to a depth of 2000 m, thus a short deployment to a depth of 300 m was first conducted with both instruments. The instruments were then returned to the deck and the LISST removed via a quick release bracket so deep LOPC casts could be continued at a station. Raw LISST size-spectrum data is presented as concentrations for each of the 32 size bins for every second of the cast.
Resumo:
This paper presents the security evaluation, energy consumption optimization, and spectrum scarcity analysis of artificial noise techniques to increase physical-layer security in Cognitive Wireless Sensor Networks (CWSNs). These techniques introduce noise into the spectrum in order to hide real information. Nevertheless, they directly affect two important parameters in Cognitive Wireless Sensor Networks (CWSNs), energy consumption and spectrum utilization. Both are affected because the number of packets transmitted by the network and the active period of the nodes increase. Security evaluation demonstrates that these techniques are effective against eavesdropper attacks, but also optimization allows for the implementation of these approaches in low-resource networks such as Cognitive Wireless Sensor Networks. In this work, the scenario is formally modeled and the optimization according to the simulation results and the impact analysis over the frequency spectrum are presented.
Resumo:
Multi-output Gaussian processes provide a convenient framework for multi-task problems. An illustrative and motivating example of a multi-task problem is multi-region electrophysiological time-series data, where experimentalists are interested in both power and phase coherence between channels. Recently, the spectral mixture (SM) kernel was proposed to model the spectral density of a single task in a Gaussian process framework. This work develops a novel covariance kernel for multiple outputs, called the cross-spectral mixture (CSM) kernel. This new, flexible kernel represents both the power and phase relationship between multiple observation channels. The expressive capabilities of the CSM kernel are demonstrated through implementation of 1) a Bayesian hidden Markov model, where the emission distribution is a multi-output Gaussian process with a CSM covariance kernel, and 2) a Gaussian process factor analysis model, where factor scores represent the utilization of cross-spectral neural circuits. Results are presented for measured multi-region electrophysiological data.
Resumo:
Background: The autonomic nervous system plays a central role in cardiovascular regulation; sympathetic activation occurs during myocardial ischemia. Objective: To assess the spectral analysis of heart rate variability during stent implantation, comparing the types of stent. Methods: This study assessed 61 patients (mean age, 64.0 years; 35 men) with ischemic heart disease and indication for stenting. Stent implantation was performed under Holter monitoring to record the spectral analysis of heart rate variability (Fourier transform), measuring the low-frequency (LF) and high-frequency (HF) components, and the LF/HF ratio before and during the procedure. Results: Bare-metal stent was implanted in 34 patients, while the others received drug-eluting stents. The right coronary artery was approached in 21 patients, the left anterior descending, in 28, and the circumflex, in 9. As compared with the pre-stenting period, all patients showed an increase in LF and HF during stent implantation (658 versus 185 ms2, p = 0.00; 322 versus 121, p = 0.00, respectively), with no change in LF/HF. During stent implantation, LF was 864 ms2 in patients with bare-metal stents, and 398 ms2 in those with drug-eluting stents (p = 0.00). The spectral analysis of heart rate variability showed no association with diabetes mellitus, family history, clinical presentation, beta-blockers, age, and vessel or its segment. Conclusions: Stent implantation resulted in concomitant sympathetic and vagal activations. Diabetes mellitus, use of beta-blockers, and the vessel approached showed no influence on the spectral analysis of heart rate variability. Sympathetic activation was lower during the implantation of drug-eluting stents.
Resumo:
Methods are presented to map complex fiber architectures in tissues by imaging the 3D spectra of tissue water diffusion with MR. First, theoretical considerations show why and under what conditions diffusion contrast is positive. Using this result, spin displacement spectra that are conventionally phase-encoded can be accurately reconstructed by a Fourier transform of the measured signal's modulus. Second, studies of in vitro and in vivo samples demonstrate correspondence between the orientational maxima of the diffusion spectrum and those of the fiber orientation density at each location. In specimens with complex muscular tissue, such as the tongue, diffusion spectrum images show characteristic local heterogeneities of fiber architectures, including angular dispersion and intersection. Cerebral diffusion spectra acquired in normal human subjects resolve known white matter tracts and tract intersections. Finally, the relation between the presented model-free imaging technique and other available diffusion MRI schemes is discussed.
Resumo:
Our new simple method for calculating accurate Franck-Condon factors including nondiagonal (i.e., mode-mode) anharmonic coupling is used to simulate the C2H4+X2B 3u←C2H4X̃1 Ag band in the photoelectron spectrum. An improved vibrational basis set truncation algorithm, which permits very efficient computations, is employed. Because the torsional mode is highly anharmonic it is separated from the other modes and treated exactly. All other modes are treated through the second-order perturbation theory. The perturbation-theory corrections are significant and lead to a good agreement with experiment, although the separability assumption for torsion causes the C2 D4 results to be not as good as those for C2 H4. A variational formulation to overcome this circumstance, and deal with large anharmonicities in general, is suggested
Resumo:
The plume generated by ablation of hydroxyapatite targets under ArF excimer laser irradiation has been investigated by means of fast intensified CCD-imaging and optical emission spectroscopy. Results have shown that the plume splits into two plasma clouds as it expands. Time and spatial resolved spectra have revealed that under the experiment conditions emission is mostly due to calcium neutral atoms and calcium oxide molecular radicals. Imaging of the plume with the aid of bandpass filters has demonstrated that the emissive species in the larger and faster plasma cloud are calcium neutral atoms, whereas in the smaller and slower one they are calcium oxide molecular radicals
Resumo:
We consider a model for a damped spring-mass system that is a strongly damped wave equation with dynamic boundary conditions. In a previous paper we showed that for some values of the parameters of the model, the large time behaviour of the solutions is the same as for a classical spring-mass damper ODE. Here we use spectral analysis to show that for other values of the parameters, still of physical relevance and related to the effect of the spring inner viscosity, the limit behaviours are very different from that classical ODE
Resumo:
Neuronal networks in vitro are prominent systems to study the development of connections in living neuronal networks and the interplay between connectivity, activity and function. These cultured networks show a rich spontaneous activity that evolves concurrently with the connectivity of the underlying network. In this work we monitor the development of neuronal cultures, and record their activity using calcium fluorescence imaging. We use spectral analysis to characterize global dynamical and structural traits of the neuronal cultures. We first observe that the power spectrum can be used as a signature of the state of the network, for instance when inhibition is active or silent, as well as a measure of the network's connectivity strength. Second, the power spectrum identifies prominent developmental changes in the network such as GABAA switch. And third, the analysis of the spatial distribution of the spectral density, in experiments with a controlled disintegration of the network through CNQX, an AMPA-glutamate receptor antagonist in excitatory neurons, reveals the existence of communities of strongly connected, highly active neurons that display synchronous oscillations. Our work illustrates the interest of spectral analysis for the study of in vitro networks, and its potential use as a network-state indicator, for instance to compare healthy and diseased neuronal networks.
Resumo:
Nowadays, one of the most important challenges to enhance the efficiency of thin film silicon solar cells is to increase the short circuit intensity by means of optical confinement methods, such as textured back-reflector structures. In this work, two possible textured structures to be used as back reflectors for n-i-p solar cells have been optically analyzed and compared to a smooth one by using a system which is able to measure the angular distribution function (ADF) of the scattered light in a wide spectral range (350-1000 nm). The accurate analysis of the ADF data corresponding to the reflector structures and to the μc-Si:H films deposited onto them allows the optical losses due to the reflector absorption and its effectiveness in increasing light absorption in the μc-Si:H layer, mainly at long wavelengths, to be quantified.