996 resultados para Spectral measure
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We consider canonical systems with singular left endpoints, and discuss the concept of a scalar spectral measure and the corresponding generalized Fourier transform associated with a canonical system with a singular left endpoint. We use the framework of de Branges’ theory of Hilbert spaces of entire functions to study the correspondence between chains of non-regular de Branges spaces, canonical systems with singular left endpoints, and spectral measures.
We find sufficient integrability conditions on a Hamiltonian H which ensure the existence of a chain of de Branges functions in the first generalized Pólya class with Hamiltonian H. This result generalizes de Branges’ Theorem 41, which showed the sufficiency of stronger integrability conditions on H for the existence of a chain in the Pólya class. We show the conditions that de Branges came up with are also necessary. In the case of Krein’s strings, namely when the Hamiltonian is diagonal, we show our proposed conditions are also necessary.
We also investigate the asymptotic conditions on chains of de Branges functions as t approaches its left endpoint. We show there is a one-to-one correspondence between chains of de Branges functions satisfying certain asymptotic conditions and chains in the Pólya class. In the case of Krein’s strings, we also establish the one-to-one correspondence between chains satisfying certain asymptotic conditions and chains in the generalized Pólya class.
Resumo:
We show that the Hausdorff dimension of the spectral measure of a class of deterministic, i.e. nonrandom, block-Jacobi matrices may be determined with any degree of precision, improving a result of Zlatos [Andrej Zlatos,. Sparse potentials with fractional Hausdorff dimension, J. Funct. Anal. 207 (2004) 216-252]. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Abstract Background Recently, it was realized that the functional connectivity networks estimated from actual brain-imaging technologies (MEG, fMRI and EEG) can be analyzed by means of the graph theory, that is a mathematical representation of a network, which is essentially reduced to nodes and connections between them. Methods We used high-resolution EEG technology to enhance the poor spatial information of the EEG activity on the scalp and it gives a measure of the electrical activity on the cortical surface. Afterwards, we used the Directed Transfer Function (DTF) that is a multivariate spectral measure for the estimation of the directional influences between any given pair of channels in a multivariate dataset. Finally, a graph theoretical approach was used to model the brain networks as graphs. These methods were used to analyze the structure of cortical connectivity during the attempt to move a paralyzed limb in a group (N=5) of spinal cord injured patients and during the movement execution in a group (N=5) of healthy subjects. Results Analysis performed on the cortical networks estimated from the group of normal and SCI patients revealed that both groups present few nodes with a high out-degree value (i.e. outgoing links). This property is valid in the networks estimated for all the frequency bands investigated. In particular, cingulate motor areas (CMAs) ROIs act as ‘‘hubs’’ for the outflow of information in both groups, SCI and healthy. Results also suggest that spinal cord injuries affect the functional architecture of the cortical network sub-serving the volition of motor acts mainly in its local feature property. In particular, a higher local efficiency El can be observed in the SCI patients for three frequency bands, theta (3-6 Hz), alpha (7-12 Hz) and beta (13-29 Hz). By taking into account all the possible pathways between different ROI couples, we were able to separate clearly the network properties of the SCI group from the CTRL group. In particular, we report a sort of compensatory mechanism in the SCI patients for the Theta (3-6 Hz) frequency band, indicating a higher level of “activation” Ω within the cortical network during the motor task. The activation index is directly related to diffusion, a type of dynamics that underlies several biological systems including possible spreading of neuronal activation across several cortical regions. Conclusions The present study aims at demonstrating the possible applications of graph theoretical approaches in the analyses of brain functional connectivity from EEG signals. In particular, the methodological aspects of the i) cortical activity from scalp EEG signals, ii) functional connectivity estimations iii) graph theoretical indexes are emphasized in the present paper to show their impact in a real application.
Resumo:
A statistical functional, such as the mean or the median, is called elicitable if there is a scoring function or loss function such that the correct forecast of the functional is the unique minimizer of the expected score. Such scoring functions are called strictly consistent for the functional. The elicitability of a functional opens the possibility to compare competing forecasts and to rank them in terms of their realized scores. In this paper, we explore the notion of elicitability for multi-dimensional functionals and give both necessary and sufficient conditions for strictly consistent scoring functions. We cover the case of functionals with elicitable components, but we also show that one-dimensional functionals that are not elicitable can be a component of a higher order elicitable functional. In the case of the variance, this is a known result. However, an important result of this paper is that spectral risk measures with a spectral measure with finite support are jointly elicitable if one adds the “correct” quantiles. A direct consequence of applied interest is that the pair (Value at Risk, Expected Shortfall) is jointly elicitable under mild conditions that are usually fulfilled in risk management applications.
Resumo:
Attempts to estimate photosynthetic rate or gross primary productivity from remotely sensed absorbed solar radiation depend on knowledge of the light use efficiency (LUE). Early models assumed LUE to be constant, but now most researchers try to adjust it for variations in temperature and moisture stress. However, more exact methods are now required. Hyperspectral remote sensing offers the possibility of sensing the changes in the xanthophyll cycle, which is closely coupled to photosynthesis. Several studies have shown that an index (the photochemical reflectance index) based on the reflectance at 531 nm is strongly correlated with the LUE over hours, days and months. A second hyperspectral approach relies on the remote detection of fluorescence, which is a directly related to the efficiency of photosynthesis. We discuss the state of the art of the two approaches. Both have been demonstrated to be effective, but we specify seven conditions required before the methods can become operational.
Resumo:
In our earlier work [1], we employed MVDR (minimum variance distortionless response) based spectral estimation instead of modified-linear prediction method [2] in pitch modification. Here, we use the Bauer method of MVDR spectral factorization, leading to a causal inverse filter rather than a noncausal filter setup with MVDR spectral estimation [1]. Further, this is employed to obtain source (or residual) signal from pitch synchronous speech frames. The residual signal is resampled using DCT/IDCT depending on the target pitch scale factor. Finally, forward filters realized from the above factorization are used to get pitch modified speech. The modified speech is evaluated subjectively by 10 listeners and mean opinion scores (MOS) are tabulated. Further, modified bark spectral distortion measure is also computed for objective evaluation of performance. We find that the proposed algorithm performs better compared to time domain pitch synchronous overlap [3] and modified-LP method [2]. A good MOS score is achieved with the proposed algorithm compared to [1] with a causal inverse and forward filter setup.
Resumo:
Objective To perform spectral analysis of noise generated by equipments and activities in a level III neonatal intensive care unit (NICU) and measure the real time sequential hourly noise levels over a 15 day period. Methods Noise generated in the NICU by individual equipments and activities were recorded with a digital spectral sound analyzer to perform spectral analysis over 0.5–8 KHz. Sequential hourly noise level measurements in all the rooms of the NICU were done for 15 days using a digital sound pressure level meter. Independent sample t test and one way ANOVA were used to examine the statistical significance of the results. The study has a 90% power to detect at least 4 dB differences from the recommended maximum of 50 dB with 95 % confidence. Results The mean noise levels in the ventilator room and stable room were 19.99 dB (A) sound pressure level (SPL) and 11.81 dB (A) SPL higher than the maximum recommended of 50 dB (A) respectively (p < 0.001). The equipments generated 19.11 dB SPL higher than the recommended norms in 1–8 KHz spectrum. The activities generated 21.49 dB SPL higher than the recommended norms in 1–8 KHz spectrum (p< 0.001). The ventilator and nebulisers produced excess noise of 8.5 dB SPL at the 0.5 KHz spectrum.Conclusion Noise level in the NICU is unacceptably high. Spectral analysis of equipment and activity noise have shown noise predominantly in the 1–8 KHz spectrum. These levels warrant immediate implementation of noise reduction protocols as a standard of care in the NICU.
Resumo:
The problem of determining optimal power spectral density models for earthquake excitation which satisfy constraints on total average power, zero crossing rate and which produce the highest response variance in a given linear system is considered. The solution to this problem is obtained using linear programming methods. The resulting solutions are shown to display a highly deterministic structure and, therefore, fail to capture the stochastic nature of the input. A modification to the definition of critical excitation is proposed which takes into account the entropy rate as a measure of uncertainty in the earthquake loads. The resulting problem is solved using calculus of variations and also within linear programming framework. Illustrative examples on specifying seismic inputs for a nuclear power plant and a tall earth dam are considered and the resulting solutions are shown to be realistic.
Resumo:
We introduce a novel temporal feature of a signal, namely extrema-based signal track length (ESTL) for the problem of speech segmentation. We show that ESTL measure is sensitive to both amplitude and frequency of the signal. The short-time ESTL (ST_ESTL) shows a promising way to capture the significant segments of speech signal, where the segments correspond to acoustic units of speech having distinct temporal waveforms. We compare ESTL based segmentation with ML and STM methods and find that it is as good as spectral feature based segmentation, but with lesser computational complexity.
Resumo:
Motivated by multi-distribution divergences, which originate in information theory, we propose a notion of `multipoint' kernels, and study their applications. We study a class of kernels based on Jensen type divergences and show that these can be extended to measure similarity among multiple points. We study tensor flattening methods and develop a multi-point (kernel) spectral clustering (MSC) method. We further emphasize on a special case of the proposed kernels, which is a multi-point extension of the linear (dot-product) kernel and show the existence of cubic time tensor flattening algorithm in this case. Finally, we illustrate the usefulness of our contributions using standard data sets and image segmentation tasks.
Resumo:
We propose a multiple initialization based spectral peak tracking (MISPT) technique for heart rate monitoring from photoplethysmography (PPG) signal. MISPT is applied on the PPG signal after removing the motion artifact using an adaptive noise cancellation filter. MISPT yields several estimates of the heart rate trajectory from the spectrogram of the denoised PPG signal which are finally combined using a novel measure called trajectory strength. Multiple initializations help in correcting erroneous heart rate trajectories unlike the typical SPT which uses only single initialization. Experiments on the PPG data from 12 subjects recorded during intensive physical exercise show that the MISPT based heart rate monitoring indeed yields a better heart rate estimate compared to the SPT with single initialization. On the 12 datasets MISPT results in an average absolute error of 1.11 BPM which is lower than 1.28 BPM obtained by the state-of-the-art online heart rate monitoring algorithm.
Resumo:
Pseudo-thermal light has been widely used in ghost imaging experiments. In order to understand the differences between the pseudo-thermal source and thermal source, we propose a method to investigate whether a light source has cross spectral purity (CSP), and experimentally measure the cross spectral properties of the pseudo-thermal light source in near-field and far-field zones. Moreover we present a theoretical analysis of the cross spectral influence on ghost imaging. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A new, and very simple spectrometer based on birefringent fiber is described. A resolution of 0.02 angstrom has been achieved, and the system has been used to measure diode laser chirp. A length of 10km of fiber would be sufficient to resolve single mode line widths.
Resumo:
It is noted that the determination of an oscillation frequency by used of the power spectrum of measured time series is susceptible to filtering of the signal. Similarly, frequency measurements made by period counting can yield different, results depending on how the signal is filtered for noise reduction. In an attempt to eliminate these ambiguities, a new measure of frequency, based on an approximate reconstruction of the phase-space trajectory of the oscillator from the signal, is introduced. This measure is shown to be invariant under linear filtering. For this reason, it is also inaccessible by spectral methods. The effect of filtering on frequency for weakly nonlinear, noisy oscillators, to which this definition applies only imperfectly, is quantified. This work provides the theoretical basis for frequency measurements employing MIRVA filtering.