Sparse block-Jacobi matrices with arbitrarily accurate Hausdorff dimension
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2010
|
Resumo |
We show that the Hausdorff dimension of the spectral measure of a class of deterministic, i.e. nonrandom, block-Jacobi matrices may be determined with any degree of precision, improving a result of Zlatos [Andrej Zlatos,. Sparse potentials with fractional Hausdorff dimension, J. Funct. Anal. 207 (2004) 216-252]. (C) 2010 Elsevier Inc. All rights reserved. FAPESP[06/60711-4] Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) CNPq Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) |
Identificador |
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, v.368, n.1, p.218-234, 2010 0022-247X http://producao.usp.br/handle/BDPI/29188 10.1016/j.jmaa.2010.02.046 |
Idioma(s) |
eng |
Publicador |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
Relação |
Journal of Mathematical Analysis and Applications |
Direitos |
restrictedAccess Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE |
Palavras-Chave | #Spectral measure #Block-Jacobi matrices #Sparse potentials #Hausdorff dimension #SINGULAR CONTINUOUS-SPECTRUM #SCHRODINGER-OPERATORS #POTENTIALS #SUBORDINACY #TREES #Mathematics, Applied #Mathematics |
Tipo |
article original article publishedVersion |