Sparse block-Jacobi matrices with arbitrarily accurate Hausdorff dimension


Autoria(s): Carvalho, Silas Luiz de; Marchetti, Domingos Humberto Urbano; Wreszinski, Walter Felipe
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

20/10/2012

20/10/2012

2010

Resumo

We show that the Hausdorff dimension of the spectral measure of a class of deterministic, i.e. nonrandom, block-Jacobi matrices may be determined with any degree of precision, improving a result of Zlatos [Andrej Zlatos,. Sparse potentials with fractional Hausdorff dimension, J. Funct. Anal. 207 (2004) 216-252]. (C) 2010 Elsevier Inc. All rights reserved.

FAPESP[06/60711-4]

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

CNPq

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Identificador

JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, v.368, n.1, p.218-234, 2010

0022-247X

http://producao.usp.br/handle/BDPI/29188

10.1016/j.jmaa.2010.02.046

http://dx.doi.org/10.1016/j.jmaa.2010.02.046

Idioma(s)

eng

Publicador

ACADEMIC PRESS INC ELSEVIER SCIENCE

Relação

Journal of Mathematical Analysis and Applications

Direitos

restrictedAccess

Copyright ACADEMIC PRESS INC ELSEVIER SCIENCE

Palavras-Chave #Spectral measure #Block-Jacobi matrices #Sparse potentials #Hausdorff dimension #SINGULAR CONTINUOUS-SPECTRUM #SCHRODINGER-OPERATORS #POTENTIALS #SUBORDINACY #TREES #Mathematics, Applied #Mathematics
Tipo

article

original article

publishedVersion