958 resultados para Spatial hedonic models
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Considering the importance of spatial issues in transport planning, the main objective of this study was to analyze the results obtained from different approaches of spatial regression models. In the case of spatial autocorrelation, spatial dependence patterns should be incorporated in the models, since that dependence may affect the predictive power of these models. The results obtained with the spatial regression models were also compared with the results of a multiple linear regression model that is typically used in trips generation estimations. The findings support the hypothesis that the inclusion of spatial effects in regression models is important, since the best results were obtained with alternative models (spatial regression models or the ones with spatial variables included). This was observed in a case study carried out in the city of Porto Alegre, in the state of Rio Grande do Sul, Brazil, in the stages of specification and calibration of the models, with two distinct datasets.
Resumo:
We develop spatial statistical models for stream networks that can estimate relationships between a response variable and other covariates, make predictions at unsampled locations, and predict an average or total for a stream or a stream segment. There have been very few attempts to develop valid spatial covariance models that incorporate flow, stream distance, or both. The application of typical spatial autocovariance functions based on Euclidean distance, such as the spherical covariance model, are not valid when using stream distance. In this paper we develop a large class of valid models that incorporate flow and stream distance by using spatial moving averages. These methods integrate a moving average function, or kernel, against a white noise process. By running the moving average function upstream from a location, we develop models that use flow, and by construction they are valid models based on stream distance. We show that with proper weighting, many of the usual spatial models based on Euclidean distance have a counterpart for stream networks. Using sulfate concentrations from an example data set, the Maryland Biological Stream Survey (MBSS), we show that models using flow may be more appropriate than models that only use stream distance. For the MBSS data set, we use restricted maximum likelihood to fit a valid covariance matrix that uses flow and stream distance, and then we use this covariance matrix to estimate fixed effects and make kriging and block kriging predictions.
Resumo:
Spatial linear models have been applied in numerous fields such as agriculture, geoscience and environmental sciences, among many others. Spatial dependence structure modelling, using a geostatistical approach, is an indispensable tool to estimate the parameters that define this structure. However, this estimation may be greatly affected by the presence of atypical observations in the sampled data. The purpose of this paper is to use diagnostic techniques to assess the sensitivity of the maximum-likelihood estimators, covariance functions and linear predictor to small perturbations in the data and/or the spatial linear model assumptions. The methodology is illustrated with two real data sets. The results allowed us to conclude that the presence of atypical values in the sample data have a strong influence on thematic maps, changing the spatial dependence structure.
Resumo:
Scholars have found that socioeconomic status was one of the key factors that influenced early-stage lung cancer incidence rates in a variety of regions. This thesis examined the association between median household income and lung cancer incidence rates in Texas counties. A total of 254 individual counties in Texas with corresponding lung cancer incidence rates from 2004 to 2008 and median household incomes in 2006 were collected from the National Cancer Institute Surveillance System. A simple linear model and spatial linear models with two structures, Simultaneous Autoregressive Structure (SAR) and Conditional Autoregressive Structure (CAR), were used to link median household income and lung cancer incidence rates in Texas. The residuals of the spatial linear models were analyzed with Moran's I and Geary's C statistics, and the statistical results were used to detect similar lung cancer incidence rate clusters and disease patterns in Texas.^
Resumo:
Low-cost systems that can obtain a high-quality foreground segmentation almostindependently of the existing illumination conditions for indoor environments are verydesirable, especially for security and surveillance applications. In this paper, a novelforeground segmentation algorithm that uses only a Kinect depth sensor is proposedto satisfy the aforementioned system characteristics. This is achieved by combininga mixture of Gaussians-based background subtraction algorithm with a new Bayesiannetwork that robustly predicts the foreground/background regions between consecutivetime steps. The Bayesian network explicitly exploits the intrinsic characteristics ofthe depth data by means of two dynamic models that estimate the spatial and depthevolution of the foreground/background regions. The most remarkable contribution is thedepth-based dynamic model that predicts the changes in the foreground depth distributionbetween consecutive time steps. This is a key difference with regard to visible imagery,where the color/gray distribution of the foreground is typically assumed to be constant.Experiments carried out on two different depth-based databases demonstrate that theproposed combination of algorithms is able to obtain a more accurate segmentation of theforeground/background than other state-of-the art approaches.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
This paper examines the impact of historic amenities on residential housing prices in the city of Lisbon, Portugal. Our study is directed towards identifying the spatial variation of amenity values for churches, palaces, lithic (stone) architecture and other historic amenities via the housing market, making use of both global and local spatial hedonic models. Our empirical evidence reveals that different types of historic and landmark amenities provide different housing premiums. While having a local non-landmark church within 100 meters increases housing prices by approximately 4.2%, higher concentrations of non-landmark churches within 1000 meters yield negative effects in the order of 0.1% of prices with landmark churches having a greater negative impact around 3.4%. In contrast, higher concentration of both landmark and non-landmark lithic structures positively influence housing prices in the order of 2.9% and 0.7% respectively. Global estimates indicate a negative effect of protected zones, however this significance is lost when accounting for heterogeneity within these areas. We see that the designation of historic zones may counteract negative effects on property values of nearby neglected buildings in historic neighborhoods by setting additional regulations ensuring that dilapidated buildings do not damage the city’s beauty or erode its historic heritage. Further, our results from a geographically weighted regression specification indicate the presence of spatial non-stationarity in the effects of different historic amenities across the city of Lisbon with variation between historic and more modern areas.
Resumo:
Transportation infrastructure is known to affect the value of real estate property by virtue of changes in accessibility. The impact of transportation facilities is highly localized as well, and it is possible that spillover effects result from the capitalization of accessibility. The objective of this study was to review the theoretical background related to spatial hedonic models and the opportunities that they provided to evaluate the effect of new transportation infrastructure. An empirical case study is presented: the Madrid Metro Line 12, known as Metrosur, in the region of Madrid, Spain. The effect of proximity to metro stations on housing prices was evaluated. The analysis took into account a host of variables, including structure, location, and neighborhood and made use of three modeling approaches: linear regression estimation with ordinary least squares, spatial error, and spatial lag. The results indicated that better accessibility to Metrosur stations had a positive impact on real estate values and that the effect was marked in cases in which a house was for sale. The results also showed the presence of submarkets, which were well defined by geographic boundaries, and transport fares, which implied that the economic benefits differed across municipalities.
Resumo:
Spatial heterogeneity, spatial dependence and spatial scale constitute key features of spatial analysis of housing markets. However, the common practice of modelling spatial dependence as being generated by spatial interactions through a known spatial weights matrix is often not satisfactory. While existing estimators of spatial weights matrices are based on repeat sales or panel data, this paper takes this approach to a cross-section setting. Specifically, based on an a priori definition of housing submarkets and the assumption of a multifactor model, we develop maximum likelihood methodology to estimate hedonic models that facilitate understanding of both spatial heterogeneity and spatial interactions. The methodology, based on statistical orthogonal factor analysis, is applied to the urban housing market of Aveiro, Portugal at two different spatial scales.
Resumo:
The promotion of energy-efficient appliances is necessary to reduce the energetic and environmental burden of the household sector. However, many studies have reported that a typical consumer underestimates the benefits of energy-saving investment on the purchase of household electric appliances. To analyze this energy-efficiency gap problem, many scholars have estimated implicit discount rates that consumers use for energy-consuming durables. Although both hedonic and choice models have been used in previous studies, a comparison between two models has not yet been done. This study uses point of sale data about Japanese residential air conditioners and estimates implicit discounts rates with both hedonic and choice models. Both models demonstrate that a typical consumer underinvests in energy efficiency. Although choice models estimate a lower implicit discount rate than hedonic models, the latter models estimate the values of other product characteristics more consistently than choice models.
Resumo:
This introduction to the Virtual Special Issue surveys the development of spatial housing economics from its roots in neo-classical theory, through more recent developments in social interactions modelling, and touching on the role of institutions, path dependence and economic history. The survey also points to some of the more promising future directions for the subject that are beginning to appear in the literature. The survey covers elements hedonic models, spatial econometrics, neighbourhood models, housing market areas, housing supply, models of segregation, migration, housing tenure, sub-national house price modelling including the so-called ripple effect, and agent-based models. Possible future directions are set in the context of a selection of recent papers that have appeared in Urban Studies. Nevertheless, there are still important gaps in the literature that merit further attention, arising at least partly from emerging policy problems. These include more research on housing and biodiversity, the relationship between housing and civil unrest, the effects of changing age distributions - notably housing for the elderly - and the impact of different international institutional structures. Methodologically, developments in Big Data provide an exciting framework for future work.
Resumo:
The basic hedonic hypothesis is that goods are valued for their utility-bearing characteristics and not for the good itself. Each attribute can be evaluated by consumers when making a purchasing decision and an implicit price can be identified for each of them. Thus, the observed price of a certain good can be analyzed as the sum of the implicit prices paid for each quality attribute. Literature has reported hedonic models estimates in the case of wines, which are excellent examples of differentiated goods worldwide.The impact of different wine attributes (intrinsic or extrinsic) on consumers’ willingness to pay has been analyzed with dissimilar results. Wines coming from "New World" producers seem to be appreciated for different attributes than wines produced in the "Old World". Moreover, "Old and New World" consumers seem to value differently the wine’s characteristics. To our knowledge, no cross country analysis has been done dealing with "New World" wines in "Old World" countries, leaving an important gap in understanding underlying attributes influencing buying decisions.
Resumo:
Funding — Forest Enterprise Scotland and the University of Aberdeen provided funding for the project. The Carnegie Trust supported the lead author, E. McHenry, in this research through the award of a tuition fees bursary.