991 resultados para Spatial Oscillations
Resumo:
We address a physically based analytical model of quantum capacitance (C-Q) in a bilayer graphene nanoribbon (BGN) under the application of an external longitudinal static bias. We demonstrate that as the gap (Delta) about the Dirac point increases, a phenomenological population inversion of the carriers in the two sets of subbands occurs. This results in a periodic and composite oscillatory behavior in the C-Q with the channel potential, which also decreases with increase in Delta. We also study the quantum size effects on the C-Q, which signatures heavy spatial oscillations due to the occurrence of van Hove singularities in the total density-of-states function of both the sets of subbands. All the mathematical results as derived in this paper converge to the corresponding well-known solution of graphene under certain limiting conditions and this compatibility is an indirect test of our theoretical formalism. (C) 2012 Elsevier By. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Numerical solutions of the sediment conservation law are reviewed in terms of their application to bed update schemes in coastal morphological models. It is demonstrated that inadequately formulated numerical techniques lead to the introduction of diffusion, dispersion and the bed elevation oscillations previously reported in the literature. Four different bed update schemes are then reviewed and tested against benchmark analytical solutions. These include a first order upwind scheme, two Lax-Wendroff schemes and a non-oscillating centred scheme (NOCS) recently applied to morphological modelling by Saint-Cast [Saint-Cast, F., 2002. Modelisation de la morphodynamique des corps sableux en milieu littoral (Modelling of coastal sand banks morphodynamics), University Bordeaux 1, Bordeaux, 245 pp.]. It is shown that NOCS limits and controls numerical errors while including all the sediment flux gradients that control morphological change. Further, no post solution filtering is required, which avoids difficulties with selecting filter strength. Finally, NOCS is compared to a recent Lax-Wendroff scheme with post-solution filtering for a longer term simulation of the morphological evolution around a trained river entrance. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
We study a generalized Hubbard model on the two-leg ladder at zero temperature, focusing on a parameter region with staggered flux (SF)/d-density wave (DDW) order. To guide our numerical calculations, we first investigate the location of a SF/DDW phase in the phase diagram of the half-filled weakly interacting ladder using a perturbative renormalization group (RG) and bosonization approach. For hole doping 6 away from half-filling, finite-system density-matrix renormalizationgroup (DMRG) calculations are used to study ladders with up to 200 rungs for intermediate-strength interactions. In the doped SF/DDW phase, the staggered rung current and the rung electron density both show periodic spatial oscillations, with characteristic wavelengths 2/delta and 1/delta, respectively, corresponding to ordering wavevectors 2k(F) and 4k(F) for the currents and densities, where 2k(F) = pi(1 - delta). The density minima are located at the anti-phase domain walls of the staggered current. For sufficiently large dopings, SF/DDW order is suppressed. The rung density modulation also exists in neighboring phases where currents decay exponentially. We show that most of the DMRG results can be qualitatively understood from weak-coupling RG/bosonization arguments. However, while these arguments seem to suggest a crossover from non-decaying correlations to power-law decay at a length scale of order 1/delta, the DMRG results are consistent with a true long-range order scenario for the currents and densities. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Gamma-band (25-140 Hz) oscillations are ubiquitous in mammalian forebrain structures involved in sensory processing, attention, learning and memory. The optic tectum (01) is the central structure in a midbrain network that participates critically in controlling spatial attention. In this review, we summarize recent advances in characterizing a neural circuit in this midbrain network that generates large amplitude, space-specific, gamma oscillations in the avian OT, both in vivo and in vitro. We describe key physiological and pharmacological mechanisms that produce and regulate the structure of these oscillations. The extensive similarities between midbrain gamma oscillations in birds and those in the neocortex and hippocampus of mammals, offer important insights into the functional significance of a midbrain gamma oscillatory code.
Resumo:
The processing of spatial and mnemonic information is believed to depend on hippocampal theta oscillations (5–12 Hz). However, in rats both the power and the frequency of the theta rhythm are modulated by locomotor activity, which is a major confounding factor when estimating its cognitive correlates. Previous studies have suggested that hippocampal theta oscillations support decision-making processes. In this study, we investigated to what extent spatial decision making modulates hippocampal theta oscillations when controlling for variations in locomotion speed. We recorded local field potentials from the CA1 region of rats while animals had to choose one arm to enter for reward (goal) in a four-arm radial maze. We observed prominent theta oscillations during the decision-making period of the task, which occurred in the center of the maze before animals deliberately ran through an arm toward goal location. In speed-controlled analyses, theta power and frequency were higher during the decision period when compared to either an intertrial delay period (also at the maze center), or to the period of running toward goal location. In addition, theta activity was higher during decision periods preceding correct choices than during decision periods preceding incorrect choices. Altogether, our data support a cognitive function for the hippocampal theta rhythm in spatial decision making
Resumo:
The processing of spatial and mnemonic information is believed to depend on hippocampal theta oscillations (5–12 Hz). However, in rats both the power and the frequency of the theta rhythm are modulated by locomotor activity, which is a major confounding factor when estimating its cognitive correlates. Previous studies have suggested that hippocampal theta oscillations support decision-making processes. In this study, we investigated to what extent spatial decision making modulates hippocampal theta oscillations when controlling for variations in locomotion speed. We recorded local field potentials from the CA1 region of rats while animals had to choose one arm to enter for reward (goal) in a four-arm radial maze. We observed prominent theta oscillations during the decision-making period of the task, which occurred in the center of the maze before animals deliberately ran through an arm toward goal location. In speed-controlled analyses, theta power and frequency were higher during the decision period when compared to either an intertrial delay period (also at the maze center), or to the period of running toward goal location. In addition, theta activity was higher during decision periods preceding correct choices than during decision periods preceding incorrect choices. Altogether, our data support a cognitive function for the hippocampal theta rhythm in spatial decision making
Resumo:
The processing of spatial and mnemonic information is believed to depend on hippocampal theta oscillations (5–12 Hz). However, in rats both the power and the frequency of the theta rhythm are modulated by locomotor activity, which is a major confounding factor when estimating its cognitive correlates. Previous studies have suggested that hippocampal theta oscillations support decision-making processes. In this study, we investigated to what extent spatial decision making modulates hippocampal theta oscillations when controlling for variations in locomotion speed. We recorded local field potentials from the CA1 region of rats while animals had to choose one arm to enter for reward (goal) in a four-arm radial maze. We observed prominent theta oscillations during the decision-making period of the task, which occurred in the center of the maze before animals deliberately ran through an arm toward goal location. In speed-controlled analyses, theta power and frequency were higher during the decision period when compared to either an intertrial delay period (also at the maze center), or to the period of running toward goal location. In addition, theta activity was higher during decision periods preceding correct choices than during decision periods preceding incorrect choices. Altogether, our data support a cognitive function for the hippocampal theta rhythm in spatial decision making
Resumo:
Intraseasonal variations (ISV) of sea surface temperature (SST) in the Bay of Bengal (BoB) is highest in its northwestern part. An Indian Ocean model forced by QuikSCAT winds and climatological river discharge (QR run) reproduces ISV of SST, albeit with weaker magnitude. Air-sea fluxes, in the presence of a shallow mixed layer, efficiently effect intraseasonal SST fluctuations. Warming during intraseasonal events is smaller (<1°C) for June - July period and larger (1.5° to 2°C) during September, the latter due to a thinner mixed layer. To examine the effect of salinity on ISV, the model was run by artificially increasing the salinity (NORR run) and by decreasing it (MAHA10 run). In NORR, both rainfall and river discharge were switched off and in MAHA10 the discharge by river Mahanadi was increased tenfold. The spatial pattern of ISV as well as its periodicity was similar in QR, NORR and MAHA10. The ISV was stronger in NORR and weaker in MAHA10, compared to QR. In NORR, both intraseasonal warming and cooling were higher than in QR, the former due to reduced air-sea heat loss as the mean SST was lower, and the latter due to enhanced subsurface processes resulting from weaker stratification. In MAHA10, both warming and cooling were lower than in QR, the former due to higher air-sea heat loss owing to higher mean SST, and the latter due to weak subsurface processes resulting from stronger stratification. These model experiments suggest that salinity effects are crucial in determining amplitudes of intraseasonal SST variations in the BoB.
Resumo:
Daily rainfall datasets of 10 years (1998-2007) of Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) version 6 and India Meteorological Department (IMD) gridded rain gauge have been compared over the Indian landmass, both in large and small spatial scales. On the larger spatial scale, the pattern correlation between the two datasets on daily scales during individual years of the study period is ranging from 0.4 to 0.7. The correlation improved significantly (similar to 0.9) when the study was confined to specific wet and dry spells each of about 5-8 days. Wavelet analysis of intraseasonal oscillations (ISO) of the southwest monsoon rainfall show the percentage contribution of the major two modes (30-50 days and 10-20 days), to be ranging respectively between similar to 30-40% and 5-10% for the various years. Analysis of inter-annual variability shows the satellite data to be underestimating seasonal rainfall by similar to 110 mm during southwest monsoon and overestimating by similar to 150 mm during northeast monsoon season. At high spatio-temporal scales, viz., 1 degrees x1 degrees grid, TMPA data do not correspond to ground truth. We have proposed here a new analysis procedure to assess the minimum spatial scale at which the two datasets are compatible with each other. This has been done by studying the contribution to total seasonal rainfall from different rainfall rate windows (at 1 mm intervals) on different spatial scales (at daily time scale). The compatibility spatial scale is seen to be beyond 5 degrees x5 degrees average spatial scale over the Indian landmass. This will help to decide the usability of TMPA products, if averaged at appropriate spatial scales, for specific process studies, e.g., cloud scale, meso scale or synoptic scale.
Resumo:
209 p. : graf.
Resumo:
The first thesis topic is a perturbation method for resonantly coupled nonlinear oscillators. By successive near-identity transformations of the original equations, one obtains new equations with simple structure that describe the long time evolution of the motion. This technique is related to two-timing in that secular terms are suppressed in the transformation equations. The method has some important advantages. Appropriate time scalings are generated naturally by the method, and don't need to be guessed as in two-timing. Furthermore, by continuing the procedure to higher order, one extends (formally) the time scale of valid approximation. Examples illustrate these claims. Using this method, we investigate resonance in conservative, non-conservative and time dependent problems. Each example is chosen to highlight a certain aspect of the method.
The second thesis topic concerns the coupling of nonlinear chemical oscillators. The first problem is the propagation of chemical waves of an oscillating reaction in a diffusive medium. Using two-timing, we derive a nonlinear equation that determines how spatial variations in the phase of the oscillations evolves in time. This result is the key to understanding the propagation of chemical waves. In particular, we use it to account for certain experimental observations on the Belusov-Zhabotinskii reaction.
Next, we analyse the interaction between a pair of coupled chemical oscillators. This time, we derive an equation for the phase shift, which measures how much the oscillators are out of phase. This result is the key to understanding M. Marek's and I. Stuchl's results on coupled reactor systems. In particular, our model accounts for synchronization and its bifurcation into rhythm splitting.
Finally, we analyse large systems of coupled chemical oscillators. Using a continuum approximation, we demonstrate mechanisms that cause auto-synchronization in such systems.
Resumo:
Motivated by recent observations of fish schools, we study coordinated group motion for individuals with oscillatory speed. Neighbors that have speed oscillations with common frequency, amplitude and average but different phases, move together in alternating spatial patterns, taking turns being towards the front, sides and back of the group. We propose a model and control laws to investigate the connections between these spatial dynamics, communication when sensing is range or direction limited, and convergence of coordinated group motions. ©2007 IEEE.
Resumo:
The spatial variation of chromospheric oscillations in network bright points (NBPs) is studied using high-resolution observations in Ca II K3. Light curves and hence power spectra were created by isolating distinct regions of the NBP via a simple intensity thresholding technique. Using this technique, it was possible to identify peaks in the power spectra with particular spatial positions within the NBPs. In particular, long-period waves with periods of 4-15 minutes (1-4 mHz) were found in the central portions of each NBP, indicating that these waves are certainly not acoustic but possibly due to magnetoacoustic or magnetogravity wave modes. We also show that spatially averaged or low spatial resolution power spectra can lead to an inability to detect such long-period waves.
Resumo:
A new method for automated coronal loop tracking, in both spatial and temporal domains, is presented. Applying this technique to TRACE data, obtained using the 171 angstrom filter on 1998 July 14, we detect a coronal loop undergoing a 270 s kink-mode oscillation, as previously found by Aschwanden et al. However, we also detect flare-induced, and previously unnoticed, spatial periodicities on a scale of 3500 km, which occur along the coronal loop edge. Furthermore, we establish a reduction in oscillatory power for these spatial periodicities of 45% over a 222 s interval. We relate the reduction in detected oscillatory power to the physical damping of these loop-top oscillations.