526 resultados para Spark-plugs.
Resumo:
"Pre-print from fifth annual report."
Resumo:
This paper presents computational work on the biogas early phase combustion in spark ignition (SI) engines using detailed chemical kinetics. Specifically, the early phase combustion is studied to assess the effect of various ignition parameters such as spark plug location, spark energy, and number of spark plugs. An integrated version of the KIVA-3V and CHEMKIN codes was developed and used for the simulations utilizing detailed kinetics involving 325 reactions and 53 species The results show that location of the spark plug and local flow field play an important role. A central plug configuration, which is associated with higher local flow velocities in the vicinity of the spark plug, showed faster initial combustion. Although a dual plug configuration shows the highest rate of fuel consumption, it is comparable to the rate exhibited by the central plug case. The radical species important in the initiation of combustion are identified, and their concentrations are monitored during the early phase of combustion. The concentration of these radicals is also observed to correlate very well with the above-mentioned trend.Thus, the role of these radicals in promoting faster combustion has been clearly established. It is also observed that the minimum ignition energy required to initiate a self-sustained flame depends on the flow field condition in the vicinity of the spark plug.Increasing the methane content in the biogas has shown improved combustion.
Resumo:
This study reports the development and performance evaluation of prototypes of biogas-fuelled stationary power generators in the range of 1 kW. Strategies to achieve high engine efficiency namely pulsed manifold injection, electronic throttle control and dual spark plugs, have been incorporated in the prototype. A complete closed-loop control of the engine operation to maintain a steady engine speed of 3000 rpm (+/- 5%) across the entire load range while maintaining an optimum fuel-air equivalence ratio is made possible by an electronic control unit (ECU) controlling the injection duration, ignition timing and throttle position. This study specifically focuses on the response of the generator to transient loads, and the overall efficiency obtained. The results obtained from testing the prototype have been found to be satisfactory and show that biogas power generators for low power applications can be made efficient (overall efficiency of 19% at electrical load of 640 W) using the strategies of biogas fuel injection.
Resumo:
The performance of combustion driver ignited by multi-spark plugs distributed along axial direction has been analysed and tested. An improved ignition method with three circumferential equidistributed ignitors at main diaphragm has been presented, by which the produced incident shock waves have higher repeatability, and better steadiness in the pressure, temperature and velocity fields of flow behind the incident shock, and thus meets the requirements of aerodynamic experiment. The attachment of a damping section at the end of the driver can eliminate the high reflection pressure produced by detonation wave, and the backward detonation driver can be employed to generate high enthalpy and high density test flow. The incident shock wave produced by this method is well repeated and with weak attenuation. The reflection wave caused by the contracted section at the main diaphragm will weaken the unfavorable effect of rarefaction wave behind the detonation wave, which indicates that the forward detonation driver can be applied in the practice. For incident shock wave of identical strength, the initial pressure of the forward detonation driver is about 1 order of magnitude lower than that of backward detonation.
Resumo:
The dielectric porcelain is usually obtained by mixing various raw materials proportions and is used in the production of electronic equipment for various applications, from capacitors of high and low Power to insulators for low, medium, high and extra high voltage, which are used in distribution lines and transmission of electricity.This work was directed to the s tudy of technological properties of technic porcelain, made from raw materials extracted from pegmatites found in the regions of Seridó and the Alto Oeste of Rio Grande do Norte, which are made of kaolin, quartz and feldspar, abundant and high quality in these regions. The technic ceramics were obtained by mixing in appropriate levels, kaolin, feldspar, quartz and clay, the last item from a pottery in the city of Sao Gonçalo do Amarante, Rio Grande do Norte. During the development the following characterizations correlated to raw materials were made: laser particle sizing, x-ray diffraction, DTA and TG. The compositions studied were formed by uniaxial pressing at a pressure of 50 MPa and sintered at temperatures ranging from 1150 to 1350ºC and levels (times) of sintering between 30, 60, 90 and 120 minutes. The characterization of the samples were taken from the analysis of weight loss, linear shrinkage, porosity, stoneware curve, bulk density, flexural strength of three points, SEM and X-ray diffraction, TMA, Dielectric and cross Resistivity. The studied materials can be employed in producing the objects used in electrical engineering such as: insulators for low, medium and high-voltage electrical systems, command devices, bushing insulation for transformers, power capacitors, spark plugs, receptacles for fluorescent and incandescent light bulbs and others
Resumo:
This work presents research into the addition of chamotte obtained from the ceramic isolator of unusable spark plugs in formulations of material mixes for standard white ceramic material with aluminum oxide bases. After the physical chemical characterization of the primary materials, standard clay and the chamotte, three mixtures were prepared with concentrations of 10, 20 and 30% chamotte by weight in relation to the standard clay. The test samples underwent heating at a rate of 30 0C/min to levels that included 100o , 200o , 300o, 400o, 500o e 600 0C and also we submitted to three distinct burn temperatures: 1450o, 1500o e 1550 0C, remaining at these temperatures for 2 hour periods. After sintering, the physical and microstructural properties of the different test samples were measured and analyzed. The results show that the materials obtained present good technical properties and that the chamotte can be reutilized as an additive in the production of white ceramic material with an aluminum oxide base
Resumo:
The cylinder head contains the combustion chamber for the air-fuel mixture and the intake and exhaust valves, the valve guide and the valve seat. The cylinder head also is a support for the camshaft and valve rocker. The holes where the spark plugs are connected are designed to fit the better place in the combustion chamber. The cylinder heads often are manufactured using materials such as aluminum and cast iron. The cooling fins located in the outside of the cylinder head are designed for a good heat transfer and therefore their dimensions and positioning are important. This work aims the calculation for a cylinder head to be installed in a 400 cc displacement, gasoline powered, four stroke, single cylinder engine. According to the displacement it will be analyzed the combustion chamber, the intake and exhaust valves, as well as the camshaft and rocker arms. This also a work to help to accomplish the design of a single cylinder engine, where the alternatives parts, cylinder block and crankcase are all already machined and assembled in this campus
Resumo:
Ceramic materials the alumina base are large industrial applications. They are required for these products, specific characteristics obtained by following strict criteria during the manufacturing process. However, after life, not always these products are reused by a suitable waste management process. In ceramist context, advance research aimed at the reuse of waste aimed at obtaining ceramics and composite materials, with marked reduction of conventional raw materials. Aiming to generate scientific, technological and environmental contribution, this work studied to obtain a composite of alumina ceramic (Al2O3) and sodium beta alumina (NaAl11O17 ), and as starting materials the residue of the ceramic insulator of spark plugs, as a source alumina (Al2O3) powder and unusable sodium bicarbonate (NaHCO3) of fire extinguishers, as a source of sodium oxide (Na2O). The final ceramic product was obtained from a conventional mixture of sodium aluminum oxide in appropriate molar proportions. Sample spark plugs were obtained, discarded by lifetime, specific to a manufacturer, which, after passing through mechanical stress (grinding, magnetic purification, washing, drying and grinding the high energy), which resulted in residue powder with ceramic content of 84.34 % alumina (Al2O3), found by FRX chemical analysis, the phases present and identified by DRX. The dry chemical fire extinguisher, baking soda-based (NaHCO3) with expired, was obtained through direct collection of the waste generated during maintenance. Subjected to heat treatment at 120 °C , the NaHCO3 powder was decomposed in sodium oxide ( Na2O), which, subjected to chemical analysis (FRX) and mineralogical (DRX) revealed a content of 86.62 % sodium oxide (Na2O) . In the following steps the experimental procedure, chemical formulations were made on a molar basis of the starting material (1:9, 1:10 and 1:11 de Na2O/ Al2O3) inclusion of additives, milling parameters, sieve analysis, dilatometry, conformation of specimens, sintering in firing steps at 800 °C , 1000 °C and 1.200 °C with varying stays 30 , 60 and 120 minutes in each of the levels. The characterization of the final product was made by the following physical tests: water absorption, porosity, linear shrinkage, mineralogical analysis by DRX and microstructural analysis by MEV. A higher formation of sodium beta alumina (NaAl11O17), in sintered specimens in levels of 1.200 °C and 120 minutes, despite the prevailing coexistence of alpha phase alumina (Al2O3). From the results obtained opens up prospects for the reuse of waste studied in this work, the potter context and in other technological areas.
Resumo:
Ceramic materials the alumina base are large industrial applications. They are required for these products, specific characteristics obtained by following strict criteria during the manufacturing process. However, after life, not always these products are reused by a suitable waste management process. In ceramist context, advance research aimed at the reuse of waste aimed at obtaining ceramics and composite materials, with marked reduction of conventional raw materials. Aiming to generate scientific, technological and environmental contribution, this work studied to obtain a composite of alumina ceramic (Al2O3) and sodium beta alumina (NaAl11O17 ), and as starting materials the residue of the ceramic insulator of spark plugs, as a source alumina (Al2O3) powder and unusable sodium bicarbonate (NaHCO3) of fire extinguishers, as a source of sodium oxide (Na2O). The final ceramic product was obtained from a conventional mixture of sodium aluminum oxide in appropriate molar proportions. Sample spark plugs were obtained, discarded by lifetime, specific to a manufacturer, which, after passing through mechanical stress (grinding, magnetic purification, washing, drying and grinding the high energy), which resulted in residue powder with ceramic content of 84.34 % alumina (Al2O3), found by FRX chemical analysis, the phases present and identified by DRX. The dry chemical fire extinguisher, baking soda-based (NaHCO3) with expired, was obtained through direct collection of the waste generated during maintenance. Subjected to heat treatment at 120 °C , the NaHCO3 powder was decomposed in sodium oxide ( Na2O), which, subjected to chemical analysis (FRX) and mineralogical (DRX) revealed a content of 86.62 % sodium oxide (Na2O) . In the following steps the experimental procedure, chemical formulations were made on a molar basis of the starting material (1:9, 1:10 and 1:11 de Na2O/ Al2O3) inclusion of additives, milling parameters, sieve analysis, dilatometry, conformation of specimens, sintering in firing steps at 800 °C , 1000 °C and 1.200 °C with varying stays 30 , 60 and 120 minutes in each of the levels. The characterization of the final product was made by the following physical tests: water absorption, porosity, linear shrinkage, mineralogical analysis by DRX and microstructural analysis by MEV. A higher formation of sodium beta alumina (NaAl11O17), in sintered specimens in levels of 1.200 °C and 120 minutes, despite the prevailing coexistence of alpha phase alumina (Al2O3). From the results obtained opens up prospects for the reuse of waste studied in this work, the potter context and in other technological areas.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
The dielectric porcelain is usually obtained by mixing various raw materials proportions and is used in the production of electronic equipment for various applications, from capacitors of high and low Power to insulators for low, medium, high and extra high voltage, which are used in distribution lines and transmission of electricity.This work was directed to the s tudy of technological properties of technic porcelain, made from raw materials extracted from pegmatites found in the regions of Seridó and the Alto Oeste of Rio Grande do Norte, which are made of kaolin, quartz and feldspar, abundant and high quality in these regions. The technic ceramics were obtained by mixing in appropriate levels, kaolin, feldspar, quartz and clay, the last item from a pottery in the city of Sao Gonçalo do Amarante, Rio Grande do Norte. During the development the following characterizations correlated to raw materials were made: laser particle sizing, x-ray diffraction, DTA and TG. The compositions studied were formed by uniaxial pressing at a pressure of 50 MPa and sintered at temperatures ranging from 1150 to 1350ºC and levels (times) of sintering between 30, 60, 90 and 120 minutes. The characterization of the samples were taken from the analysis of weight loss, linear shrinkage, porosity, stoneware curve, bulk density, flexural strength of three points, SEM and X-ray diffraction, TMA, Dielectric and cross Resistivity. The studied materials can be employed in producing the objects used in electrical engineering such as: insulators for low, medium and high-voltage electrical systems, command devices, bushing insulation for transformers, power capacitors, spark plugs, receptacles for fluorescent and incandescent light bulbs and others
Resumo:
Plugs or containerized plants can offer several advantages over traditional bare-rooted runner plants for strawberry (Fragaria x ananassa) production. Some of these benefits include easier planting, better establishment, fewer pests and diseases, and lower water use during plant establishment resulting in less leaching of applied fertilizers. Plugs also offer the potential for mechanical planting. In some areas of Europe and North America, plugs provide earlier production, greater productivity and larger fruit than runners. Research has also shown that the plants can be grown under short days and low temperatures to manipulate flower initiation and fruiting. Plugs are more expensive to buy compared with runner plants, and will only be adopted by industry if the extra costs are matched by convenience, resource conservation, increased fruiting and returns to producers. We investigated the productivity of 'Festival' and 'Sugarbaby' propagated as plugs (75 cm3 containers) and runners from Stanthorpe in southern Queensland (elevation of 872 m), and grown at Nambour on the Sunshine Coast (elevation 29 m). At planting, the plug plants weighed 0.8 ± 0.1 g DW compared with 53 ± 0.5 g DW for the runner plants. 'Sugarbaby' plugs were larger than 'Festival' plugs (33 ± 0.6 g versus 2.9 ± 0.6 g). The differences in growth at planting were maintained until the third week of July (day 94), with the plug plants weighing 17.8 ± 2.2 g, and the runner plants 21.4 ± 23 g. The proportion of plant dry matter allocated to the leaves increased over time from 59 to 70%, while the proportion allocated to the roots decreased from 21 to 10%. Harvest commenced after 60 days, with the plug plants yielding only 60% of the yields of the runner plants up until 8 August or day 109 (14.2 ± 1.4 g plant -1 week-1 versus 23.6 ± 1.9 g plant-1 week-1). 'Festival' (22.2 ± 2.0 g plant-1 week -1) had higher yields than 'Sugarbaby' (15.5 ± 1.5 g plant-1 week-1), even though plants of the latter were larger. Average fruit weight was 15.6 ± 0.3 g, with no effect of cultivar, plant type or harvest time. In other words, the differences in yield between the various treatments were due to differences in fruit set The lower yields of the plug plants probably reflect their small size at planting. Future research should determine whether plugs grown in larger cells (150 to 300 cm3 as in the USA and Europe) are more productive. Tips to be grown in larger containers should be harvested earlier than those for small cells to maximize root growth of the plug plant. This will probably extend the time required from harvest of the tips and potting them from the current four to five weeks, to eight to ten weeks.
Resumo:
Relative abundance distributions of multiply-charged ionic species have been measured for the RF spark and vacuum vibrator are ion sources, for a number of elements. An attempt has been made to explain the observed charge state distribution on the basis of models for the arc and spark plasma. The difficulties in the way of explaining the observed charge state distributions, using the LTE model with Saha distribution as well as the corona model, are pointed out. The distribution can be explained by a diffusion-dominated plasma model with known or calculated values for ionization cross-sections, the single impact model being suitable for the RF spark and the multiple impact model for the vibrator arc.