921 resultados para Space-sensitive process model
Resumo:
In the context of expensive numerical experiments, a promising solution for alleviating the computational costs consists of using partially converged simulations instead of exact solutions. The gain in computational time is at the price of precision in the response. This work addresses the issue of fitting a Gaussian process model to partially converged simulation data for further use in prediction. The main challenge consists of the adequate approximation of the error due to partial convergence, which is correlated in both design variables and time directions. Here, we propose fitting a Gaussian process in the joint space of design parameters and computational time. The model is constructed by building a nonstationary covariance kernel that reflects accurately the actual structure of the error. Practical solutions are proposed for solving parameter estimation issues associated with the proposed model. The method is applied to a computational fluid dynamics test case and shows significant improvement in prediction compared to a classical kriging model.
Resumo:
We study how the crossover exponent, phi, between the directed percolation (DP) and compact directed percolation (CDP) behaves as a function of the diffusion rate in a model that generalizes the contact process. Our conclusions are based in results pointed by perturbative series expansions and numerical simulations, and are consistent with a value phi = 2 for finite diffusion rates and phi = 1 in the limit of infinite diffusion rate.
Resumo:
This paper shows a new hybrid method for risk assessment regarding interruptions in sensitive processes due to faults in electric power distribution systems. This method determines indices related to long duration interruptions and short duration voltage variations (SDVV), such as voltage sags and swells in each customer supplied by the distribution network. Frequency of such occurrences and their impact on customer processes are determined for each bus and classified according to their corresponding magnitude and duration. The method is based on information regarding network configuration, system parameters and protective devices. It randomly generates a number of fault scenarios in order to assess risk areas regarding long duration interruptions and voltage sags and swells in an especially inventive way, including frequency of events according to their magnitude and duration. Based on sensitivity curves, the method determines frequency indices regarding disruption in customer processes that represent equipment malfunction and possible process interruptions due to voltage sags and swells. Such approach allows for the assessment of the annual costs associated with each one of the evaluated power quality indices.
Resumo:
Among several process variability sources, valve friction and inadequate controller tuning are supposed to be two of the most prevalent. Friction quantification methods can be applied to the development of model-based compensators or to diagnose valves that need repair, whereas accurate process models can be used in controller retuning. This paper extends existing methods that jointly estimate the friction and process parameters, so that a nonlinear structure is adopted to represent the process model. The developed estimation algorithm is tested with three different data sources: a simulated first order plus dead time process, a hybrid setup (composed of a real valve and a simulated pH neutralization process) and from three industrial datasets corresponding to real control loops. The results demonstrate that the friction is accurately quantified, as well as ""good"" process models are estimated in several situations. Furthermore, when a nonlinear process model is considered, the proposed extension presents significant advantages: (i) greater accuracy for friction quantification and (ii) reasonable estimates of the nonlinear steady-state characteristics of the process. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Software engineering, software measurement, software process engineering, capability, maturity
Resumo:
The objectives of this Master’s Thesis were to find out what kind of knowledge management strategy would fit best an IT organization that uses ITIL (Information Technology Infrastructure Library) framework for IT Service Management and to create a knowledge management process model to support chosen strategy. The empirical material for this research was collected through qualitative semi-structured interviews of a case organization Stora Enso Corporate IT. The results of the qualitative interviews indicate that codification knowledge management strategy would fit best for the case organization. The knowledge management process model was created based on earlier studies and a literature of knowledge management. The model was evaluated in the interview research and the results showed that the created process model is realistic, useful, and it responds to a real life phenomenon.
Resumo:
This thesis presents an approach for formulating and validating a space averaged drag model for coarse mesh simulations of gas-solid flows in fluidized beds using the two-fluid model. Proper modeling for fluid dynamics is central in understanding any industrial multiphase flow. The gas-solid flows in fluidized beds are heterogeneous and usually simulated with the Eulerian description of phases. Such a description requires the usage of fine meshes and small time steps for the proper prediction of its hydrodynamics. Such constraint on the mesh and time step size results in a large number of control volumes and long computational times which are unaffordable for simulations of large scale fluidized beds. If proper closure models are not included, coarse mesh simulations for fluidized beds do not give reasonable results. The coarse mesh simulation fails to resolve the mesoscale structures and results in uniform solids concentration profiles. For a circulating fluidized bed riser, such predicted profiles result in a higher drag force between the gas and solid phase and also overestimated solids mass flux at the outlet. Thus, there is a need to formulate the closure correlations which can accurately predict the hydrodynamics using coarse meshes. This thesis uses the space averaging modeling approach in the formulation of closure models for coarse mesh simulations of the gas-solid flow in fluidized beds using Geldart group B particles. In the analysis of formulating the closure correlation for space averaged drag model, the main parameters for the modeling were found to be the averaging size, solid volume fraction, and distance from the wall. The closure model for the gas-solid drag force was formulated and validated for coarse mesh simulations of the riser, which showed the verification of this modeling approach. Coarse mesh simulations using the corrected drag model resulted in lowered values of solids mass flux. Such an approach is a promising tool in the formulation of appropriate closure models which can be used in coarse mesh simulations of large scale fluidized beds.
Resumo:
This study examines the structure of the Russian Reflexive Marker ( ся/-сь) and offers a usage-based model building on Construction Grammar and a probabilistic view of linguistic structure. Traditionally, reflexive verbs are accounted for relative to non-reflexive verbs. These accounts assume that linguistic structures emerge as pairs. Furthermore, these accounts assume directionality where the semantics and structure of a reflexive verb can be derived from the non-reflexive verb. However, this directionality does not necessarily hold diachronically. Additionally, the semantics and the patterns associated with a particular reflexive verb are not always shared with the non-reflexive verb. Thus, a model is proposed that can accommodate the traditional pairs as well as for the possible deviations without postulating different systems. A random sample of 2000 instances marked with the Reflexive Marker was extracted from the Russian National Corpus and the sample used in this study contains 819 unique reflexive verbs. This study moves away from the traditional pair account and introduces the concept of Neighbor Verb. A neighbor verb exists for a reflexive verb if they share the same phonological form excluding the Reflexive Marker. It is claimed here that the Reflexive Marker constitutes a system in Russian and the relation between the reflexive and neighbor verbs constitutes a cross-paradigmatic relation. Furthermore, the relation between the reflexive and the neighbor verb is argued to be of symbolic connectivity rather than directionality. Effectively, the relation holding between particular instantiations can vary. The theoretical basis of the present study builds on this assumption. Several new variables are examined in order to systematically model variability of this symbolic connectivity, specifically the degree and strength of connectivity between items. In usage-based models, the lexicon does not constitute an unstructured list of items. Instead, items are assumed to be interconnected in a network. This interconnectedness is defined as Neighborhood in this study. Additionally, each verb carves its own niche within the Neighborhood and this interconnectedness is modeled through rhyme verbs constituting the degree of connectivity of a particular verb in the lexicon. The second component of the degree of connectivity concerns the status of a particular verb relative to its rhyme verbs. The connectivity within the neighborhood of a particular verb varies and this variability is quantified by using the Levenshtein distance. The second property of the lexical network is the strength of connectivity between items. Frequency of use has been one of the primary variables in functional linguistics used to probe this. In addition, a new variable called Constructional Entropy is introduced in this study building on information theory. It is a quantification of the amount of information carried by a particular reflexive verb in one or more argument constructions. The results of the lexical connectivity indicate that the reflexive verbs have statistically greater neighborhood distances than the neighbor verbs. This distributional property can be used to motivate the traditional observation that the reflexive verbs tend to have idiosyncratic properties. A set of argument constructions, generalizations over usage patterns, are proposed for the reflexive verbs in this study. In addition to the variables associated with the lexical connectivity, a number of variables proposed in the literature are explored and used as predictors in the model. The second part of this study introduces the use of a machine learning algorithm called Random Forests. The performance of the model indicates that it is capable, up to a degree, of disambiguating the proposed argument construction types of the Russian Reflexive Marker. Additionally, a global ranking of the predictors used in the model is offered. Finally, most construction grammars assume that argument construction form a network structure. A new method is proposed that establishes generalization over the argument constructions referred to as Linking Construction. In sum, this study explores the structural properties of the Russian Reflexive Marker and a new model is set forth that can accommodate both the traditional pairs and potential deviations from it in a principled manner.
Resumo:
The objective of this thesis is to understand how to create and develop a successful place brand and how to manage it systematically. The thesis thoroughly explains the phenomenon of place brands and place branding and presents different sub-categories of place branding. The theoretical part of the thesis provides a wide overview on the prevailing literature of place branding, place brand development and place brand management, which form the basis of the thesis’ theoretical framework. The theoretical evidence is gathered from a case living area. The living area is developed by one construction company, which has a significant role in the construction industry in Finland. The empirical evidence is gathered through semi-structured in-depth interviews by interviewing the new living area’s carefully selected stakeholder groups. Afterwards the empirical data is analyzed and reflected to the theoretical findings. After examining the case living area, the thesis will present a new living area branding process model based on prevailing theories and empirical findings.
Resumo:
Although the construction pollution index has been put forward and proved to be an efficient approach to reducing or mitigating pollution level during the construction planning stage, the problem of how to select the best construction plan based on distinguishing the degree of its potential adverse environmental impacts is still a research task. This paper first reviews environmental issues and their characteristics in construction, which are critical factors in evaluating potential adverse impacts of a construction plan. These environmental characteristics are then used to structure two decision models for environmental-conscious construction planning by using an analytic network process (ANP), including a complicated model and a simplified model. The two ANP models are combined and called the EnvironalPlanning system, which is applied to evaluate potential adverse environmental impacts of alternative construction plans.
Resumo:
A class identification algorithms is introduced for Gaussian process(GP)models.The fundamental approach is to propose a new kernel function which leads to a covariance matrix with low rank,a property that is consequently exploited for computational efficiency for both model parameter estimation and model predictions.The objective of either maximizing the marginal likelihood or the Kullback–Leibler (K–L) divergence between the estimated output probability density function(pdf)and the true pdf has been used as respective cost functions.For each cost function,an efficient coordinate descent algorithm is proposed to estimate the kernel parameters using a one dimensional derivative free search, and noise variance using a fast gradient descent algorithm. Numerical examples are included to demonstrate the effectiveness of the new identification approaches.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Gesture-based applications have particularities, since users interact in a natural way, much as they interact in the non-digital world. Hence, new requirements are needed on the software design process. This paper shows a software development process model for these applications, including requirement specification, design, implementation, and testing procedures. The steps and activities of the proposed model were tested through a game case study, which is a puzzle game. The puzzle is completed when all pieces of a painting are correctly positioned by the drag and drop action of users hand gesture. It also shows the results obtained of applying a heuristic evaluation on this game. © 2012 IEEE.