949 resultados para Soy phosphatidylcholine
Resumo:
Study of Liposomes Stability Containing Soy Phosphatidyleholine and Hydrogenated Soy Phosphatydylcholine Adding or Not Cholesterol by Turbidity Method. Liposomes are structures composed by phospholipids as soy phosphatidylcholine (PC) and hydrogenated soy phosphatydylcholine (PCH). Among the methods used to prove liposomes stability, turbidity method is widely used. The objective of this work was to study the liposomes stability containing PC or PCH with and without cholesterol (CHOL) by turbidity method. Liposomes were stored a 30 degrees C during 90 days and periodically absorbance readings at 410 nm were made to verify possible turbidity alterations. Increases in the turbidity with time occurred for PC liposomes. In the presence of CHOL higher turbidity was obtained probably reflecting the increase in the size of liposomes. For PCH liposomes the presence of CHOL did not affect the turbidity suggesting higher physical stability of the structures.
Resumo:
This work describes the development of spray dried polymer coated liposomes composed of soy phosphatidylcholine (SPC) and phospholipid dimyristoyl phosphatidylglycerol (DMPG) coated with alginate, chitosan or trimethyl chitosan (TMC), that are able to penetrate through the nasal mucosa and offer enhanced penetration over uncoated liposomes when delivered as a dry powder. All the liposome formulations, loaded with BSA as model antigen, were spray-dried to obtain powder size and liposome size in a suitable range for nasal delivery. Although coating resulted in some reduction in encapsulation efficiency, levels were still maintained between 60% and 69% and the structural integrity of the entrapped protein and its release characteristics were maintained. Coating with TMC gave the best product characteristics in terms of entrapment efficiency, glass transition (Tg) and mucoadhesive strength, while penetration of nasal mucosal tissue was very encouraging when these liposomes were administered as dispersions although improved results were observed for the dry powders
Resumo:
Liposomes are structures composed by phospholipids as soy phosphatidylcholine (PC) and hydrogenated soy phosphatydylcholine (PCH). Among the methods used to prove liposomes stability, turbidity method is widely used. The objective of this work was to study the liposomes stability containing PC or PCH with and without cholesterol (CHOL) by turbidity method. Liposomes were stored a 30°C during 90 days and periodically absorbance readings at 410 nm were made to verify possible turbidity alterations. Increases in the turbidity with time occurred for PC liposomes. In the presence of CHOL higher turbidity was obtained probably reflecting the increase in the size of liposomes. For PCH liposomes the presence of CHOL did not affect the turbidity suggesting higher physical stability of the structures.
Resumo:
Due to great difficulty of penetration of drugs through skin, different organized systems, such as liposomes, have been studied in order to increase percutaneous penetration. The aims of this work were to obtain and characterize small unilamellar liposomes containing caffeine (CAF). Liposomes composed by soy phosphatidylcholine - PS (40 mM) or hydrogenated PS - PSH (40 mM), with and without cholesterol - CHO (6 mM) and CAF (30 mg/mL), were characterized by size distribution, determination of mean diameter and encapsulation efficiency. Uniform size distribution with low polidispersity was observed. The mean of diameters obtained were: PS/CHO (64 nm), PS (80 nm), PSH/CHO (85 nm), PS/CAF (145 nm), PS/CHO/CAF (147 nm), PSH/CHO/CAF (152 nm), PSH (166 nm) and PSH/CAF (481 nm). The obtained encapsulation efficiency was 10.84% for PSH/CHO/CAF, followed by PS/CHO (6.61%), PSH/CAF (3.07%) and PS/CAF (1.57%).
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dietary soy lecithin supplementation decreases hyperlipidemia and influences lipid metabolism. Although this product is used by diabetic patients, there are no data about the effect of soy lecithin supplementation on the immune system. The addition of phosphatidylcholine, the main component of lecithin, to a culture of lymphocytes has been reported to alter their function. If phosphatidylcholine changes lymphocyte functions in vitro as previously shown, then it could also affect immune cells in vivo. In the present study, the effect of dietary soy lecithin oil macrophage phagocytic capacity and on lymphocyte number in response to concanavalin A (ConA) stimulation was investigated in non-diabetic and alloxan-induced diabetic rats. Supplementation was carried Out daily with 2 g kg(-1) b.w. lecithin during 7 days. After that, blood was drawn from fasting rats and peritoneal macrophages and mesenteric lymph node lymphocytes were collected to determine the phospholipid content. Plasma triacylglycerol (TAG), total and HDL cholesterol and glucose levels were also determined. Lymphocytes were stimulated by Conk The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) dye reduction method and flow cytometry were employed to evaluate lymphocyte metabolism and cell number, respectively. Soy lecithin supplementation significantly increased both macrophage phagocytic capacity (+29%) in non-diabetic rats and the lymphocyte number in diabetic rats (+92%). It is unlikely that plasma lipid levels indirectly affect immune cells, since plasma cholesterol, TAG, or phospholipid content was not modified by lecithin supplementation. In Conclusion, lymphocyte and macrophage function were altered by lecithin supplementation, indicating ail immunomodulatory effect of phosphatidylcholine. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Partial pseudoternary phase diagrams were constructed for soy bean oil (SBO)/surfactant/NaCl aqueous solution systems, at 25 degrees C, using the anionic sodium bis(2-ethylhexyl) sulfosuccinate (ACT) and zwiterionic phosphatidylcholine (PC) or mixtures of these surfactants. The isotropic single phase of water-in-oil (W/O) microemulsions (MEs) is shown in the phase diagram and their viscosity reported. ME samples containing small amount of surfactant exhibit slightly higher viscosity than pure SBO, and were used in the solubilization of small water soluble molecules. NaCl enhances the area of the ME phase and MEs with different surfactant composition exhibit different induction time as obtained from tests of oxidative stability, and so are the MEs enriched with ascorbic acid, folic acid and FeSO4, with the latter exhibiting lower stability. The so prepared enriched soy bean oil has potential application in food industry since the surfactants are food grade. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A commercial casein hydrolysate was microencapsulated in liposomes produced with non-purified soy lecithin, cryoprotected with two different disaccharides and lyophilized. The encapsulation efficiency of casein hydrolysate ranged from 30 to 40%. The powders were analyzed by differential scanning calorimetry (DSC), scanning electron micrography (SEM), infrared spectroscopy (FTIR) and wide angle X-ray diffraction (WAXD). DSC data revealed the presence of an exothermal transition in empty lyophilized liposomes, which was ascribed to the presence of a quasicrystalline lamellar phase (intermediary characteristics between the L-beta and L-c phases). The addition of peptides to the liposomal system caused the disappearance of this exothermic phenomenon, as they were located in the polar headgroup portion of the bilayer, causing disorder and preventing the formation of the quasicrystalline phase. Infrared data indicated the presence of the peptides in the lyophilized formulations and showed that the cryoprotectants interacted effectively with the polar heads of phospholipids in the bilayer.