999 resultados para Sonar Simulations


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Retrieval, treatment, and disposal of high-level radioactive waste (HLW) is expected to cost between 100 and 300 billion dollars. The risk to workers, public health, and the environment are also a major area of concern for HLW. Visualization of the interface between settled solids and the optically opaque liquid is needed for retrieval of the waste from underground storage tanks. A Profiling sonar selected for this research generates 2-D image of the interface. Multiple experiments were performed to demonstrate the effectiveness of sonar in real-time monitoring the interface inside HLW tanks. First set of experiments demonstrated that objects shapes could be identified even when 30% of solids entrained in liquid, thereby mapping the interface. Simulation of sonar system validated these results. Second set of experiments confirmed the sonar’s ability in detecting the solids with density similar to the immersed liquid. Third set of experiments determined the affects of near by objects on image resolution. Final set of experiments proved the functional and chemical capabilities of sonar in caustic solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simultaneous Localization and Mapping (SLAM) is a procedure used to determine the location of a mobile vehicle in an unknown environment, while constructing a map of the unknown environment at the same time. Mobile platforms, which make use of SLAM algorithms, have industrial applications in autonomous maintenance, such as the inspection of flaws and defects in oil pipelines and storage tanks. A typical SLAM consists of four main components, namely, experimental setup (data gathering), vehicle pose estimation, feature extraction, and filtering. Feature extraction is the process of realizing significant features from the unknown environment such as corners, edges, walls, and interior features. In this work, an original feature extraction algorithm specific to distance measurements obtained through SONAR sensor data is presented. This algorithm has been constructed by combining the SONAR Salient Feature Extraction Algorithm and the Triangulation Hough Based Fusion with point-in-polygon detection. The reconstructed maps obtained through simulations and experimental data with the fusion algorithm are compared to the maps obtained with existing feature extraction algorithms. Based on the results obtained, it is suggested that the proposed algorithm can be employed as an option for data obtained from SONAR sensors in environment, where other forms of sensing are not viable. The algorithm fusion for feature extraction requires the vehicle pose estimation as an input, which is obtained from a vehicle pose estimation model. For the vehicle pose estimation, the author uses sensor integration to estimate the pose of the mobile vehicle. Different combinations of these sensors are studied (e.g., encoder, gyroscope, or encoder and gyroscope). The different sensor fusion techniques for the pose estimation are experimentally studied and compared. The vehicle pose estimation model, which produces the least amount of error, is used to generate inputs for the feature extraction algorithm fusion. In the experimental studies, two different environmental configurations are used, one without interior features and another one with two interior features. Numerical and experimental findings are discussed. Finally, the SLAM algorithm is implemented along with the algorithms for feature extraction and vehicle pose estimation. Three different cases are experimentally studied, with the floor of the environment intentionally altered to induce slipping. Results obtained for implementations with and without SLAM are compared and discussed. The present work represents a step towards the realization of autonomous inspection platforms for performing concurrent localization and mapping in harsh environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toll plazas are particularly susceptible to build-ups of vehicle-emitted pollutants because vehicles pass through in low gear. To look at this, three-dimensional computational fluid dynamics simulations of pollutant dispersion are used on the standard k e turbulence model. The effects of wind speed, wind direction and topography on pollutant dispersion were discussed. The Wuzhuang toll plaza on the Hefei-Nanjing expressway is considered, and the effects of the retaining walls along both sides of the plaza on pollutant dispersion is analysed. There are greater pollutant concentrations near the tollbooths as the angle between the direction of the wind and traffic increases implying that retaining walls impede dispersion. The slope of the walls has little influence on the variations in pollutant concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone is important because it provides the skeleton structural integrity and enables movement and locomotion. Its development and morphology follow its function. It adapts to changes of mechanical loading and has the ability to repair itself after damage or fracture. The processes of bone development, bone adaptation, and bone regeneration in fracture healing are regulated, in part, by mechanical stimuli that result when the bone is loaded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Games and related virtual environments have been a much-hyped area of the entertainment industry. The classic quote is that games are now approaching the size of Hollywood box office sales [1]. Books are now appearing that talk up the influence of games on business [2], and it is one of the key drivers of present hardware development. Some of this 3D technology is now embedded right down at the operating system level via the Windows Presentation Foundations – hit Windows/Tab on your Vista box to find out... In addition to this continued growth in the area of games, there are a number of factors that impact its development in the business community. Firstly, the average age of gamers is approaching the mid thirties. Therefore, a number of people who are in management positions in large enterprises are experienced in using 3D entertainment environments. Secondly, due to the pressure of demand for more computational power in both CPU and Graphical Processing Units (GPUs), your average desktop, any decent laptop, can run a game or virtual environment. In fact, the demonstrations at the end of this paper were developed at the Queensland University of Technology (QUT) on a standard Software Operating Environment, with an Intel Dual Core CPU and basic Intel graphics option. What this means is that the potential exists for the easy uptake of such technology due to 1. a broad range of workers being regularly exposed to 3D virtual environment software via games; 2. present desktop computing power now strong enough to potentially roll out a virtual environment solution across an entire enterprise. We believe such visual simulation environments can have a great impact in the area of business process modeling. Accordingly, in this article we will outline the communication capabilities of such environments, giving fantastic possibilities for business process modeling applications, where enterprises need to create, manage, and improve their business processes, and then communicate their processes to stakeholders, both process and non-process cognizant. The article then concludes with a demonstration of the work we are doing in this area at QUT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoindentation is a useful technique for probing the mechanical properties of bone, and finite element (FE) modeling of the indentation allows inverse determination of elasto-plastic constitutive properties. However, FE simulations to date have assumed frictionless contact between indenter and bone. The aim of this study was to explore the effect of friction in simulations of bone nanoindentation. Two dimensional axisymmetric FE simulations were performed using a spheroconical indenter of tip radius 0.6m and angle 90°. The coefficient of friction between indenter and bone was varied between 0.0 (frictionless) and 0.3. Isotropic linear elasticity was used in all simulations, with bone elastic modulus E=13.56GPa and Poisson’s ratio =0.3. Plasticity was incorporated using both Drucker-Prager and von Mises yield surfaces. Friction had a modest effect on the predicted force-indentation curve for both von Mises and Drucker-Prager plasticity, reducing maximum indenter displacement by 10% and 20% respectively as friction coefficient was increased from zero to 0.3 (at a maximum indenter force of 5mN). However, friction has a much greater effect on predicted pile-up after indentation, reducing predicted pile-up from 0.27m to 0.11m with a von Mises model, and from 0.09m to 0.02m with Drucker-Prager plasticity. We conclude that it is important to include friction in nanoindentation simulations of bone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The iPlan treatment planning sys-tem uses a pencil beam algorithm, with density cor-rections, to predict the doses delivered by very small (stereotactic) radiotherapy fields. This study tests the accuracy of dose predictions made by iPlan, for small-field treatments delivered to a planar solid wa-ter phantom and to heterogeneous human tissue using the BrainLAB m3 micro-multileaf collimator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we discuss an advanced, 3D groundwater visualisation and animation system that allows scientists, government agencies and community groups to better understand the groundwater processes that effect community planning and decision-making. The system is unique in that it has been designed to optimise community engagement. Although it incorporates a powerful visualisation engine, this open-source system can be freely distributed and boasts a simple user interface allowing individuals to run and investigate the models on their own PCs and gain intimate knowledge of the groundwater systems. The initial version of the Groundwater Visualisation System (GVS v1.0), was developed from a coastal delta setting (Bundaberg, QLD), and then applied to a basalt catchment area (Obi Obi Creek, Maleny, QLD). Several major enhancements have been developed to produce higher quality visualisations, including display of more types of data, support for larger models and improved user interaction. The graphics and animation capabilities have also been enhanced, notably the display of boreholes, depth logs and time-series water level surfaces. The GVS software remains under continual development and improvement

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoindentation is a useful technique for probing the mechanical properties of bone, and finite element (FE) modeling of the indentation allows inverse determination of elasto-plastic constitutive properties. However, all but one FE study to date have assumed frictionless contact between indenter and bone. The aim of this study was to explore the effect of friction in simulations of bone nanoindentation. Two dimensional axisymmetric FE simulations were performed using a spheroconical indenter of tip radius 0.6 m and angle 90°. The coefficient of friction between indenter and bone was varied between 0.0 (frictionless) and 0.3. Isotropic linear elasticity was used in all simulations, with bone elastic modulus E=13.56GPa and Poisson‟s ratio f 0.3. Plasticity was incorporated using both Drucker-Prager and von Mises yield surfaces. Friction had a modest effect on the predicted force-indentation curve for both von Mises and Drucker-Prager plasticity, reducing maximum indenter displacement by 10% and 20% respectively as friction coefficient was increased from zero to 0.3 (at a maximum indenter force of 5mN). However, friction has a much greater effect on predicted pile-up after indentation, reducing predicted pile-up from 0.27 to 0.11 m with a von Mises model, and from 0.09 to 0.02 m with Drucker-Prager plasticity. We conclude that it is potentially important to include friction in nanoindentation simulations of bone if pile-up is used to compare simulation results with experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study uses dosimetry film measurements and Monte Carlo simulations to investigate the accuracy of type-a (pencil-beam) dose calculations for predicting the radiation doses delivered during stereotactic radiotherapy treatments of the brain. It is shown that when evaluating doses in a water phantom, the type-a algorithm provides dose predictions which are accurate to within clinically relevant criteria, gamma(3%,3mm), but these predictions are nonetheless subtly different from the results of evaluating doses from the same fields using radiochromic film and Monte Carlo simulations. An analysis of a clinical meningioma treatment suggests that when predicting stereotactic radiotherapy doses to the brain, the inaccuracies of the type-a algorithm can be exacerbated by inadequate evaluation of the effects of nearby bone or air, resulting in dose differences of up to 10% for individual fields. The results of this study indicate the possible advantage of using Monte Carlo calculations, as well as measurements with high-spatial resolution media, to verify type-a predictions of dose delivered in cranial treatments.