966 resultados para Solids incorporation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Osmotic dehydration is becoming more popular as a complementary treatment in the processing of dehydrated foods, since it presents some advantages such as minimising heat damage to the colour and flavour, inhibiting enzymatic browning and thus dispensing the addition of sulphite and, mainly, reducing energy costs. The objective of the present study was to evaluate the effect of using inverted sugar and sucrose syrups as osmotic agents in the dehydration of mango. The conditions used in the dehydration process were: syrup/fruit ratio of 3:1 (v/w); temperature of 45ºC and constant stirring. The in natura and osmo-dehydrated fruits were evaluated in relation to pH, moisture content, water activity (a w) and soluble solids (ºBrix). Solids incorporation and loss in mass after the dehydration process were also determined. The sensory acceptance of the in natura and osmo-dehydrated fruits was determined for the attributes of aroma, flavour, texture and overall acceptance using a hedonic scale. Osmotic dehydration resulted in a reduction in moisture content and water activity, an increase in Brix and maintenance of the pH. The treatment with inverted sugar syrup resulted in more significant alterations in moisture content, a w, Brix, solids incorporation and loss in mass than the treatment with sucrose syrup. Mangos osmo-dehydrated with inverted sugar (55.3% inversion rate) syrup obtained acceptance similar to in natura mangos, this treatment being considered the most adequate for dehydration purposes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper evaluated the influence of temperature and concentration of the sucrose syrup on the pre-osmotic dehydration of peaches. Physical (colour and texture) and chemical variables (soluble solid content; total sugar, reducing and non-reducing sugar contents; and titratable acidity) were investigated, as well as the osmotic dehydration parameters (loss of weight and water; solids incorporation). An experimental central composite design was employed varying the temperature (from 30 to 50 ºC) and concentration (from 45 to 65 ºBrix) and maintaining the syrup to fruit ratio (4:1), process time (4 hours), and format (slices). The degree of acceptance was used in the sensory analysis evaluating the following characteristics: appearance, taste, texture, colour, and overall quality using a hedonic scale. The results were modelled using the Statistica program (v. 6.0) and the Response Surface Methodology. The mathematical models of the following dimensionless variations yielded significant (p < 0.05) and predictive results: soluble solids content, total and non-reducing sugar contents, titratable acidity, colour parameter L*, and water loss. The models of the attributes colour and appearance yielded significant (p < 0.10) but not predictive results. Temperature was the prevalent effect in the models. The process conditions in the range from 50 to 54.1 ºC and from 45 to 65 ºBrix led to greater water losses and better sensory performances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The incorporation of cobalt in mixed metal carbonates is a possible route to the immobilization of this toxic element in the environment. However, the thermodynamics of (Ca,Co)CO3 solid solutions are still unclear due to conflicting data from experiment and from the observation of natural ocurrences. We report here the results of a computer simulation study of the mixing of calcite (CaCO3) and spherocobaltite (CoCO3), using density functional theory calculations. Our simulations suggest that previously proposed thermodynamic models, based only on the range of observed compositions, significantly overestimate the solubility between the two solids and therefore underestimate the extension of the miscibility gap under ambient conditions. The enthalpy of mixing of the disordered solid solution is strongly positive and moderately asymmetric: calcium incorporation in spherocobaltite is more endothermic than cobalt incorporation in calcite. Ordering of the impurities in (0001) layers is energetically favourable with respect to the disordered solid solution at low temperatures and intermediate compositions, but the ordered phase is still unstable to demixing. We calculate the solvus and spinodal lines in the phase diagram using a sub-regular solution model, and conclude that many Ca1-xCoxCO3 mineral solid solutions (with observed compositions of up to x=0.027, and above x=0.93) are metastable with respect to phase separation. We also calculate solid/aqueous distribution coefficients to evaluate the effect of the strong non-ideality of mixing on the equilibrium with aqueous solution, showing that the thermodynamically-driven incorporation of cobalt in calcite (and of calcium in spherocobaltite) is always very low, regardless of the Co/Ca ratio of the aqueous environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To study the influence of Ga addition on photoinduced effect, GaGeS glasses with constant atomic ratio S/Ge = 2.6 have been prepared. Using Raman spectroscopy, we have reported the effect of Ga on the structural behavior of these glasses. An increase of the glass transition temperature T(g), the linear refractive index and the density have been observed with increasing gallium content. The photoinduced phenomena have been examined through the influence of time exposure and power density, when exposed to above light bandgap (3.53 eV). The correlation between photoinduced phenomena and Ga content in such glasses are shown hereby. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Snow in the environment acts as a host to rich chemistry and provides a matrix for physical exchange of contaminants within the ecosystem. The goal of this review is to summarise the current state of knowledge of physical processes and chemical reactivity in surface snow with relevance to polar regions. It focuses on a description of impurities in distinct compartments present in surface snow, such as snow crystals, grain boundaries, crystal surfaces, and liquid parts. It emphasises the microscopic description of the ice surface and its link with the environment. Distinct differences between the disordered air–ice interface, often termed quasi-liquid layer, and a liquid phase are highlighted. The reactivity in these different compartments of surface snow is discussed using many experimental studies, simulations, and selected snow models from the molecular to the macro-scale. Although new experimental techniques have extended our knowledge of the surface properties of ice and their impact on some single reactions and processes, others occurring on, at or within snow grains remain unquantified. The presence of liquid or liquid-like compartments either due to the formation of brine or disorder at surfaces of snow crystals below the freezing point may strongly modify reaction rates. Therefore, future experiments should include a detailed characterisation of the surface properties of the ice matrices. A further point that remains largely unresolved is the distribution of impurities between the different domains of the condensed phase inside the snowpack, i.e. in the bulk solid, in liquid at the surface or trapped in confined pockets within or between grains, or at the surface. While surface-sensitive laboratory techniques may in the future help to resolve this point for equilibrium conditions, additional uncertainty for the environmental snowpack may be caused by the highly dynamic nature of the snowpack due to the fast metamorphism occurring under certain environmental conditions. Due to these gaps in knowledge the first snow chemistry models have attempted to reproduce certain processes like the long-term incorporation of volatile compounds in snow and firn or the release of reactive species from the snowpack. Although so far none of the models offers a coupled approach of physical and chemical processes or a detailed representation of the different compartments, they have successfully been used to reproduce some field experiments. A fully coupled snow chemistry and physics model remains to be developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorinated denture base acrylic resins can present more stable physical properties when compared with conventional polymers. This study evaluated the incorporation of a fluoroalkyl methacrylate (FMA) mixture in a denture base material and its effect on roughness and flexural strength. A swelling behavior assessment of acrylic resin specimens (n=3, per substance) after 12 h of FMA or methyl methacrylate (MMA) immersion was conducted to determine the solvent properties. Rectangular specimens (n=30) were allocated to three groups, according to the concentration of FMA substituted into the monomer component of a heat-polymerized acrylic resin (Lucitone 550), as follows: 0% (control), 10% and 20% (v/v). Acrylic resin mixed with concentrations of 25% or more did not reach the dough stage and was not viable. The surface roughness and flexural strength of the specimens were tested. Variables were analyzed by ANOVA and Tukey's test (a=0.05). Immersion in FMA produced negligible swelling, and MMA produced obvious swelling and dissolution of the specimens. Surface roughness at concentrations of 0%, 10% and 20% were: 0.25 ± 0.04, 0.24 ± 0.04, 0.22 ± 0.03 mm (F=1.78; p=0.189, not significant). Significant differences were found for flexural strength (F=15.92; p<0.001) and modulus of elasticity (F=7.67; p=0.002), with the following results: 96 ± 6, 82 ± 5, 84 ± 6 MPa, and 2,717 ± 79, 2,558 ± 128, 2574 ± 87 MPa, respectively. The solvent properties of FMA against acrylic resin are weak, which would explain why concentrations over 20% were not viable. Surface changes were not detected after the incorporation of FMA in the denture base acrylic resin tested. The addition of FMA into denture base resin may lower the flexural strength and modulus of elasticity, regardless of the tested concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real-time (RT)-PCR increases diagnostic yield for bacterial meningitis and is ideal for incorporation into routine surveillance in a developing country. We validated a multiplex RT-PCR assay for Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae in Brazil. Risk factors for being culture-negative, RT-PCR positive were determined. The sensitivity of RT-PCR in cerebrospinal fluid (CSF) was 100% (95% confidence limits, 96.0%-100%) for N. meningitidis, 97.8% (85.5%-99.9%) for S. pneumoniae, and 66.7% (9.4%-99.2%) for H. influenzae. Specificity ranged from 98.9% to 100%. Addition of RT-PCR to routine microbiologic methods increased the yield for detection of S. pneumoniae, N. meningitidis, and H. influenzae cases by 52%, 85%, and 20%, respectively. The main risk factor for being culture negative and RT-PCR positive was presence of antibiotic in CSF (odds ratio 12.2, 95% CI 5.9-25.0). RT-PCR using CSF was highly sensitive and specific and substantially added to measures of meningitis disease burden when incorporated into routine public health surveillance in Brazil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eleven density functionals are compared with regard to their performance for the lattice constants of solids. We consider standard functionals, such as the local-density approximation and the Perdew-Burke-Ernzerhof (PBE) generalized-gradient approximation (GGA), as well as variations of PBE GGA, such as PBEsol and similar functionals, PBE-type functionals employing a tighter Lieb-Oxford bound, and combinations thereof. On a test set of 60 solids, we perform a system-by-system analysis for selected functionals and a full statistical analysis for all of them. The impact of restoring the gradient expansion and of tightening the Lieb-Oxford bound is discussed, and confronted with previous results obtained from other codes, functionals or test sets. No functional is uniformly good for all investigated systems, but surprisingly, and pleasingly, the simplest possible modifications to PBE turn out to have the most beneficial effect on its performance. The atomization energy of molecules was also considered and on a testing set of six molecules, we found that the PBE functional is clearly the best, the others leading to strong overbinding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the standard generalized-gradient approximations (GGAs) in use in modern electronic-structure theory [Perdew-Burke-Ernzerhof (PBE) GGA] and a recently proposed modification designed specifically for solids (PBEsol) are identified as particular members of a family of functionals taking their parameters from different properties of homogeneous or inhomogeneous electron liquids. Three further members of this family are constructed and tested, together with the original PBE and PBEsol, for atoms, molecules, and solids. We find that PBE, in spite of its popularity in solid-state physics and quantum chemistry, is not always the best performing member of the family and that PBEsol, in spite of having been constructed specifically for solids, is not the best for solids. The performance of GGAs for finite systems is found to sensitively depend on the choice of constraints stemming from infinite systems. Guidelines both for users and for developers of density functionals emerge from this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High solids content film-forming poly[styrene-co-(n-butyl acrylate)] [poly(Sty-co-BuA)] latexes armored with Laponite clay platelets have been synthesized by soap-free emulsion copolymerization of styrene and n-butyl acrylate. The polymerizations were performed in batch in the presence of Laponite and a methyl ether acrylateterminated poly(ethylene glycol) macromonomer in order to promote polymer/clay association. The overall polymerization kinetics showed a pronounced effect of clay on nucleation and stabilization of the latex particles. Cryo-transmission electron microscopy observation confirmed the armored morphology and indicated that the majority of Laponite platelets were located at the particle surface. The resulting nanostructured films displayed enhanced mechanical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Banana, an important component in the diet of the global population, is one of the most consumed fruits in the world. This fruit is also very favorable to industry processes (e. g., fermented beverages) due to its rich content on soluble solids and minerals, with low acidity. The main objective of this work was to evaluate the influence of factors such as banana weight and extraction time during a hot aqueous extraction process on the total soluble solids content of banana. The extract is to be used by the food and beverage industries. The experiments were performed with 105 mL of water, considering the moisture of the ripe banana (65%). Total sugar concentrations were obtained in a beer analyzer and the result expressed in degrees Plato (degrees P, which is the weight of the extract or the sugar equivalent in 100 g solution at 20 degrees C), aiming at facilitating the use of these results by the beverage industries. After previous studies of characterization of the fruit and of ripening performance, a 2(2) full-factorial star design was carried out, and a model was developed to describe the behavior of the dependent variable (total soluble solids) as a function of the factors (banana weight and extraction time), indicating as optimum conditions for extraction 38.5 g of banana at 39.7 min.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Generalized Finite Element Method (GFEM) is employed in this paper for the numerical analysis of three-dimensional solids tinder nonlinear behavior. A brief summary of the GFEM as well as a description of the formulation of the hexahedral element based oil the proposed enrichment strategy are initially presented. Next, in order to introduce the nonlinear analysis of solids, two constitutive models are briefly reviewed: Lemaitre`s model, in which damage and plasticity are coupled, and Mazars`s damage model suitable for concrete tinder increased loading. Both models are employed in the framework of a nonlocal approach to ensure solution objectivity. In the numerical analyses carried out, a selective enrichment of approximation at regions of concern in the domain (mainly those with high strain and damage gradients) is exploited. Such a possibility makes the three-dimensional analysis less expensive and practicable since re-meshing resources, characteristic of h-adaptivity, can be minimized. Moreover, a combination of three-dimensional analysis and the selective enrichment presents a valuable good tool for a better description of both damage and plastic strain scatterings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neodymium doped and undoped aluminum oxide samples were obtained using two different techniques: Pechini and sol-gel. Fine grained powders were produced using both procedures, which were analyzed using Scanning Electron Microscopy (SEM) and Thermo-Stimulated Luminescence (TSL). Results showed that neodymium ions incorporation is responsible for the creation of two new TSL peaks (125 and 265 degrees C) and, also, for the enhancement of the intrinsic TSL peak at 190 degrees C. An explanation was proposed for these observations. SEM gave the dimensions of the clusters produced by each method, showing that those obtained by Pechini are smaller than the ones produced by sol-gel; it can also explain the higher emission supplied by the first one. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper compares the critical impeller speed results for 6 L Denver and Wemco bench-scale flotation cells with findings from a study by Van der Westhuizen and Deglon [Van der Westhuizen, A.P., Deglon, D.A., 2007. Evaluation of solids suspension in a pilot-scale mechanical flotation cell: the critical impeller speed. Minerals Engineering 20,233-240; Van der Westhuizen, A.P., Deglon, D.A., 2008. Solids suspension in a pilot scale mechanical flotation cell: a critical impeller speed correlation. Minerals Engineering 21, 621-629] conducted in a 125 L Batequip flotation cell. Understanding solids suspension has become increasingly important due to dramatic increases in flotation cell sizes. The critical impeller speed is commonly used to indicate the effectiveness of solids suspension. The minerals used in this study were apatite, quartz and hematite. The critical impeller speed was found to be strongly dependent on particle size, solids density and air flow rate, with solids concentration having a lesser influence. Liquid viscosity was found to have a negligible effect. The general Zwietering-type critical impeller speed correlation developed by Van der Westhuizen and Deglon [Van der Westhuizen, A.P., Deglon, D.A., 2008. Solids suspension in a pilot scale mechanical flotation cell: a critical impeller speed correlation. Minerals Engineering 21, 621-629] was found to be applicable to all three flotation machines. The exponents for particle size, solids concentration and liquid viscosity were equivalent for all three cells. The exponent for solids density was found to be less significant than that obtained by the previous authors, and to be consistent with values reported in the general literature for stirred tanks. Finally, a new dimensionless critical impeller speed correlation is proposed where the particle size is divided by the impeller diameter. This modified equation generally predicts the experimental measurements well, with most predictions within 10% of the experimental. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objectives of the present study were (a) to study the effects of the different combinations of Lactobacillus delbrueckii subsp. bulgaricus (Lb), Lactobacillus acidophilus (La), Lactobacillus rhamnosus (Lr), and Bifidobacterium animalis subsp. lactis (BI) in co-culture with Streptococcus thermophilus (St) on the rate of acid development in milk and milk-whey mixture, and (b) the effect of the level of the total solids of the different bases on the acidification profile and viability of potential health-promoting microorganisms. The co-culture of St-Lr showed the lowest values V(max) in all bases; while the co-culture St-Bl had high t(Vmax) in milk and whey bases (12 and 10 g/100 g, respectively). Co-cultures St-La and St-Lb reached V(max) at pH 5.5, while St-Lr and St-Bl at pH 5.91. Fermentation time to reach pH 4.5 was longer when St-Lr co-culture was used, while St-Lb had the lowest value. All the products had slight development of acid during the storage period, and lowest values were observed when the St-Bl co-culture was employed. Lb, BI and St cultures had high counts at pH 4.5 in the three bases. The total solids affected the viability of Lb and La. The technological interest of these combinations is discussed in this article. (C) 2008 Swiss Society of Food Science and Technology. Published by Elsevier Ltd. AM rights reserved.