733 resultados para Smoothed bootstrap
Resumo:
This paper analyses the productivity growth of the SUMA tax offices located in Spain evolved between 2004 and 2006 by using Malmquist Index based on Data Envelopment Analysis (DEA) models. It goes a step forward by smoothed bootstrap procedure which improves the quality of the results by generalising the samples, so that the conclusions obtained from them can be applied in order to increase productivity levels. Additionally, the productivity effect is divided into two different components, efficiency and technological change, with the objective of helping to clarify the role played by either the managers or the level of technology in the final performance figures.
Resumo:
This article explores how data envelopment analysis (DEA), along with a smoothed bootstrap method, can be used in applied analysis to obtain more reliable efficiency rankings for farms. The main focus is the smoothed homogeneous bootstrap procedure introduced by Simar and Wilson (1998) to implement statistical inference for the original efficiency point estimates. Two main model specifications, constant and variable returns to scale, are investigated along with various choices regarding data aggregation. The coefficient of separation (CoS), a statistic that indicates the degree of statistical differentiation within the sample, is used to demonstrate the findings. The CoS suggests a substantive dependency of the results on the methodology and assumptions employed. Accordingly, some observations are made on how to conduct DEA in order to get more reliable efficiency rankings, depending on the purpose for which they are to be used. In addition, attention is drawn to the ability of the SLICE MODEL, implemented in GAMS, to enable researchers to overcome the computational burdens of conducting DEA (with bootstrapping).
Resumo:
Some factors complicate comparisons between linkage maps from different studies. This problem can be resolved if measures of precision, such as confidence intervals and frequency distributions, are associated with markers. We examined the precision of distances and ordering of microsatellite markers in the consensus linkage maps of chromosomes 1, 3 and 4 from two F 2 reciprocal Brazilian chicken populations, using bootstrap sampling. Single and consensus maps were constructed. The consensus map was compared with the International Consensus Linkage Map and with the whole genome sequence. Some loci showed segregation distortion and missing data, but this did not affect the analyses negatively. Several inversions and position shifts were detected, based on 95% confidence intervals and frequency distributions of loci. Some discrepancies in distances between loci and in ordering were due to chance, whereas others could be attributed to other effects, including reciprocal crosses, sampling error of the founder animals from the two populations, F(2) population structure, number of and distance between microsatellite markers, number of informative meioses, loci segregation patterns, and sex. In the Brazilian consensus GGA1, locus LEI1038 was in a position closer to the true genome sequence than in the International Consensus Map, whereas for GGA3 and GGA4, no such differences were found. Extending these analyses to the remaining chromosomes should facilitate comparisons and the integration of several available genetic maps, allowing meta-analyses for map construction and quantitative trait loci (QTL) mapping. The precision of the estimates of QTL positions and their effects would be increased with such information.
Resumo:
Dissertação para obtenção do Grau de Mestre em Matemática e Aplicações, no ramo Actuariado, Estatística e Investigação Operacional
Resumo:
This paper approaches issues related to frame problems and nonresponse in surveys. These nonsampling errors affect the accuracy of the estimates whereas the estimators became biased and less precise. We analyse some estimation methods that deal with those problems and give an especial focus to post-stratification procedures.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Mecânica
Resumo:
Optimization with stochastic algorithms has become a relevant research field. Due to its stochastic nature, its assessment is not straightforward and involves integrating accuracy and precision. Performance profiles for the mean do not show the trade-off between accuracy and precision, and parametric stochastic profiles require strong distributional assumptions and are limited to the mean performance for a large number of runs. In this work, bootstrap performance profiles are used to compare stochastic algorithms for different statistics. This technique allows the estimation of the sampling distribution of almost any statistic even with small samples. Multiple comparison profiles are presented for more than two algorithms. The advantages and drawbacks of each assessment methodology are discussed.
Resumo:
Publicado em "AIP Conference Proceedings", Vol. 1648
Resumo:
Os métodos de alisamento exponencial são muito utilizados na modelação e previsão de séries temporais, devido à sua versatilidade e opção de modelos que integram. Na estatística computacional, a metodologia Bootstrap é muito aplicada em inferência estatística no âmbito de séries temporais. Este estudo teve como principal objectivo analisar o desempenho do método de Holt-Winters associado à metodologia Bootstrap, como um processo alternativo na modelação e previsão de séries temporais.
Resumo:
This paper proposes a bootstrap artificial neural network based panel unit root test in a dynamic heterogeneous panel context. An application to a panel of bilateral real exchange rate series with the US Dollar from the 20 major OECD countries is provided to investigate the Purchase Power Parity (PPP). The combination of neural network and bootstrapping significantly changes the findings of the economic study in favour of PPP.
Resumo:
This paper proposes a novel way of testing exogeneity of an explanatory variable without any parametric assumptions in the presence of a "conditional" instrumental variable. A testable implication is derived that if an explanatory variable is endogenous, the conditional distribution of the outcome given the endogenous variable is not independent of its instrumental variable(s). The test rejects the null hypothesis with probability one if the explanatory variable is endogenous and it detects alternatives converging to the null at a rate n..1=2:We propose a consistent nonparametric bootstrap test to implement this testable implication. We show that the proposed bootstrap test can be asymptotically justi.ed in the sense that it produces asymptotically correct size under the null of exogeneity, and it has unit power asymptotically. Our nonparametric test can be applied to the cases in which the outcome is generated by an additively non-separable structural relation or in which the outcome is discrete, which has not been studied in the literature.
Resumo:
A variabilidade natural do solo dificulta a obtenção de valores que representem adequadamente as propriedades do solo em determinada área. O conhecimento do número mínimo de observações, que devem ser realizadas para representar, com um erro aceitável, uma propriedade ou característica do solo, é fundamental para que os resultados experimentais possam ser aplicados com segurança. No presente trabalho, comparou-se o método convencional (teste-t) com o método "bootstrap", com vistas em estimar o número de observações necessárias para calcular os parâmetros que caracterizam a relação entre a condutividade hidráulica e o teor de água do solo, determinada pelo método do perfil instantâneo. Realizou-se um experimento de drenagem num Latossolo Vermelho-Amarelo em Piracicaba (SP), numa parcela experimental com 45 pontos de observação distanciados de 1 m entre si. Observaram-se a umidade (com TDR) e o potencial mátrico (com tensiômetros) durante três semanas de redistribuição da água. Após processamento dos dados, o conjunto de valores mostrou uma distribuição não-normal, fazendo-se necessária a eliminação de "outliers" para a aplicação do método convencional, normalizando a distribuição. Assim, o uso do método tradicional só é recomendado após a confirmação da pertinência da eliminação dos "outliers". Ambos os métodos de análise requerem grande número de repetições, reafirmando que determinações da função condutividade hidráulica com poucas repetições não podem ser extrapoladas para áreas maiores.
Resumo:
En este trabajo se revisan algunas de las aplicaciones clásicas del bootstrap al análisis de la supervivencia. Se consideran en primer lugar el estimador bootstrap de la varianza y el estimador de la mediana corregido para el sesgo del estimador de Kaplan-Meier de la función de supervivencia. A continuación se consideran algunos aspectos mas recientes, tales como métodos para construir bandas de confianza para el estimador de la funcidn de supervivencia y contrastes aproximados para la comparación de funciones de supervivencia. En ambas situaciones el bootstrap resulta de gran utilidad para la aproximación de 10s valores críticos necesarios.