859 resultados para Smart sensors
Resumo:
Smart Environments are currently considered a key factor to connect the physical world with the information world. A Smart Environment can be defined as the combination of a physical environment, an infrastructure for data management (called Smart Space), a collection of embedded systems gathering heterogeneous data from the environment and a connectivity solution to convey these data to the Smart Space. With this vision, any application which takes advantages from the environment could be devised, without the need to directly access to it, since all information are stored in the Smart Space in a interoperable format. Moreover, according to this vision, for each entity populating the physical environment, i.e. users, objects, devices, environments, the following questions can be arise: “Who?”, i.e. which are the entities that should be identified? “Where?” i.e. where are such entities located in physical space? and “What?” i.e. which attributes and properties of the entities should be stored in the Smart Space in machine understandable format, in the sense that its meaning has to be explicitly defined and all the data should be linked together in order to be automatically retrieved by interoperable applications. Starting from this the location detection is a necessary step in the creation of Smart Environments. If the addressed entity is a user and the environment a generic environment, a meaningful way to assign the position, is through a Pedestrian Tracking System. In this work two solution for these type of system are proposed and compared. One of the two solution has been studied and developed in all its aspects during the doctoral period. The work also investigates the problem to create and manage the Smart Environment. The proposed solution is to create, by means of natural interactions, links between objects and between objects and their environment, through the use of specific devices, i.e. Smart Objects
Resumo:
Electric power grids throughout the world suffer from serious inefficiencies associated with under-utilization due to demand patterns, engineering design and load following approaches in use today. These grids consume much of the world’s energy and represent a large carbon footprint. From material utilization perspectives significant hardware is manufactured and installed for this infrastructure often to be used at less than 20-40% of its operational capacity for most of its lifetime. These inefficiencies lead engineers to require additional grid support and conventional generation capacity additions when renewable technologies (such as solar and wind) and electric vehicles are to be added to the utility demand/supply mix. Using actual data from the PJM [PJM 2009] the work shows that consumer load management, real time price signals, sensors and intelligent demand/supply control offer a compelling path forward to increase the efficient utilization and carbon footprint reduction of the world’s grids. Underutilization factors from many distribution companies indicate that distribution feeders are often operated at only 70-80% of their peak capacity for a few hours per year, and on average are loaded to less than 30-40% of their capability. By creating strong societal connections between consumers and energy providers technology can radically change this situation. Intelligent deployment of smart sensors, smart electric vehicles, consumer-based load management technology very high saturations of intermittent renewable energy supplies can be effectively controlled and dispatched to increase the levels of utilization of existing utility distribution, substation, transmission, and generation equipment. The strengthening of these technology, society and consumer relationships requires rapid dissemination of knowledge (real time prices, costs & benefit sharing, demand response requirements) in order to incentivize behaviors that can increase the effective use of technological equipment that represents one of the largest capital assets modern society has created.
Resumo:
The thesis presented the fabrication and characterisation of polymer optical fibers in their applications as optical amplifier and smart sensors.Optical polymers such as PMMA are found to be a very good host material due to their ability to incorporate very high concentration of optical gain media like fluorescent dyes and rare earth compounds. High power and high gain optical amplification in organic dye-doped polymer optical fibers is possible due to extremely large emission cross sections of oyes. Dye doped (Rhodamine 6G) optical fibers were fabricated by using indigenously developed polymer optical fiber drawing tower. Loss characterization of drawn dye doped fibers was carried out using side illumination technique. The advantage of the above technique is that it is a nondestructive method and can also be used for studying the uniformity in fiber diameter and doping. Sensitivity of the undoped polymer fibers to temperature and microbending were also studied in its application in smart sensors.Optical amplification studies using the dye doped polymer optical fibers were carried out and found that an amplification of l8dB could be achieved using a very short fiber of length lOcm. Studies were carried out in fibers with different dye concentrations and diameter and it was observed that gain stability was achieved at relatively high dye concentrations irrespective of the fiber diameter.Due to their large diameter, large numerical aperture, flexibility and geometrical versatility of polymer optical fibers it has a wide range of applications in the field of optical sensing. Just as in the case of conventional silica based fiber optic sensors, sensing techniques like evanescent wave, grating and other intensity modulation schemes can also be efficiently utilized in the case of POF based sensors. Since polymer optical fibers have very low Young's modulus when compared to glass fibers, it can be utilized for sensing mechanical stress and strain efficiently in comparison with its counterpart. Fiber optic sensors have proved themselves as efficient and reliable devices to sense various parameters like aging, crack formation, weathering in civil structures. A similar type of study was carried out to find the setting characteristics of cement paste used for constructing civil structures. It was found that the measurements made by using fiber optic sensors are far more superior than that carried out by conventional methods. More over,POF based sensors were found to have more sensitivity as well.
Resumo:
The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.
Resumo:
In this work a forest fire detection solution using small autonomous aerial vehicles is proposed. The FALCOS unmanned aerial vehicle developed for remote-monitoring purposes is described. This is a small size UAV with onboard vision processing and autonomous flight capabilities. A set of custom developed navigation sensors was developed for the vehicle. Fire detection is performed through the use of low cost digital cameras and near-infrared sensors. Test results for navigation and ignition detection in real scenario are presented.
Resumo:
Various fall-detection solutions have been previously proposed to create a reliable surveillance system for elderly people with high requirements on accuracy, sensitivity and specificity. In this paper, an enhanced fall detection system is proposed for elderly person monitoring that is based on smart sensors worn on the body and operating through consumer home networks. With treble thresholds, accidental falls can be detected in the home healthcare environment. By utilizing information gathered from an accelerometer, cardiotachometer and smart sensors, the impacts of falls can be logged and distinguished from normal daily activities. The proposed system has been deployed in a prototype system as detailed in this paper. From a test group of 30 healthy participants, it was found that the proposed fall detection system can achieve a high detection accuracy of 97.5%, while the sensitivity and specificity are 96.8% and 98.1% respectively. Therefore, this system can reliably be developed and deployed into a consumer product for use as an elderly person monitoring device with high accuracy and a low false positive rate.
Resumo:
Os sensores inteligentes são dispositivos que se diferenciam dos sensores comuns por apresentar capacidade de processamento sobre os dados monitorados. Eles tipicamente são compostos por uma fonte de alimentação, transdutores (sensores e atuadores), memória, processador e transceptor. De acordo com o padrão IEEE 1451 um sensor inteligente pode ser dividido em módulos TIM e NCAP que devem se comunicar através de uma interface padronizada chamada TII. O módulo NCAP é a parte do sensor inteligente que comporta o processador. Portanto, ele é o responsável por atribuir a característica de inteligência ao sensor. Existem várias abordagens que podem ser utilizadas para o desenvolvimento desse módulo, dentre elas se destacam aquelas que utilizam microcontroladores de baixo custo e/ou FPGA. Este trabalho aborda o desenvolvimento de uma arquitetura hardware/software para um módulo NCAP segundo o padrão IEEE 1451.1. A infra-estrutura de hardware é composta por um driver de interface RS-232, uma memória RAM de 512kB, uma interface TII, o processador embarcado NIOS II e um simulador do módulo TIM. Para integração dos componentes de hardware é utilizada ferramenta de integração automática SOPC Builder. A infra-estrutura de software é composta pelo padrão IEEE 1451.1 e pela aplicação especí ca do NCAP que simula o monitoramento de pressão e temperatura em poços de petróleo com o objetivo de detectar vazamento. O módulo proposto é embarcado em uma FPGA e para a sua prototipação é usada a placa DE2 da Altera que contém a FPGA Cyclone II EP2C35F672C6. O processador embarcado NIOS II é utilizado para dar suporte à infra-estrutura de software do NCAP que é desenvolvido na linguagem C e se baseia no padrão IEEE 1451.1. A descrição do comportamento da infra-estrutura de hardware é feita utilizando a linguagem VHDL
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
El actual contexto de fabricación, con incrementos en los precios de la energía, una creciente preocupación medioambiental y cambios continuos en los comportamientos de los consumidores, fomenta que los responsables prioricen la fabricación respetuosa con el medioambiente. El paradigma del Internet de las Cosas (IoT) promete incrementar la visibilidad y la atención prestada al consumo de energía gracias tanto a sensores como a medidores inteligentes en los niveles de máquina y de línea de producción. En consecuencia es posible y sencillo obtener datos de consumo de energía en tiempo real proveniente de los procesos de fabricación, pero además es posible analizarlos para incrementar su importancia en la toma de decisiones. Esta tesis pretende investigar cómo utilizar la adopción del Internet de las Cosas en el nivel de planta de producción, en procesos discretos, para incrementar la capacidad de uso de la información proveniente tanto de la energía como de la eficiencia energética. Para alcanzar este objetivo general, la investigación se ha dividido en cuatro sub-objetivos y la misma se ha desarrollado a lo largo de cuatro fases principales (en adelante estudios). El primer estudio de esta tesis, que se apoya sobre una revisión bibliográfica comprehensiva y sobre las aportaciones de expertos, define prácticas de gestión de la producción que son energéticamente eficientes y que se apoyan de un modo preeminente en la tecnología IoT. Este primer estudio también detalla los beneficios esperables al adoptar estas prácticas de gestión. Además, propugna un marco de referencia para permitir la integración de los datos que sobre el consumo energético se obtienen en el marco de las plataformas y sistemas de información de la compañía. Esto se lleva a cabo con el objetivo último de remarcar cómo estos datos pueden ser utilizados para apalancar decisiones en los niveles de procesos tanto tácticos como operativos. Segundo, considerando los precios de la energía como variables en el mercado intradiario y la disponibilidad de información detallada sobre el estado de las máquinas desde el punto de vista de consumo energético, el segundo estudio propone un modelo matemático para minimizar los costes del consumo de energía para la programación de asignaciones de una única máquina que deba atender a varios procesos de producción. Este modelo permite la toma de decisiones en el nivel de máquina para determinar los instantes de lanzamiento de cada trabajo de producción, los tiempos muertos, cuándo la máquina debe ser puesta en un estado de apagada, el momento adecuado para rearrancar, y para pararse, etc. Así, este modelo habilita al responsable de producción de implementar el esquema de producción menos costoso para cada turno de producción. En el tercer estudio esta investigación proporciona una metodología para ayudar a los responsables a implementar IoT en el nivel de los sistemas productivos. Se incluye un análisis del estado en que se encuentran los sistemas de gestión de energía y de producción en la factoría, así como también se proporcionan recomendaciones sobre procedimientos para implementar IoT para capturar y analizar los datos de consumo. Esta metodología ha sido validada en un estudio piloto, donde algunos indicadores clave de rendimiento (KPIs) han sido empleados para determinar la eficiencia energética. En el cuarto estudio el objetivo es introducir una vía para obtener visibilidad y relevancia a diferentes niveles de la energía consumida en los procesos de producción. El método propuesto permite que las factorías con procesos de producción discretos puedan determinar la energía consumida, el CO2 emitido o el coste de la energía consumida ya sea en cualquiera de los niveles: operación, producto o la orden de fabricación completa, siempre considerando las diferentes fuentes de energía y las fluctuaciones en los precios de la misma. Los resultados muestran que decisiones y prácticas de gestión para conseguir sistemas de producción energéticamente eficientes son posibles en virtud del Internet de las Cosas. También, con los resultados de esta tesis los responsables de la gestión energética en las compañías pueden plantearse una aproximación a la utilización del IoT desde un punto de vista de la obtención de beneficios, abordando aquellas prácticas de gestión energética que se encuentran más próximas al nivel de madurez de la factoría, a sus objetivos, al tipo de producción que desarrolla, etc. Así mismo esta tesis muestra que es posible obtener reducciones significativas de coste simplemente evitando los períodos de pico diario en el precio de la misma. Además la tesis permite identificar cómo el nivel de monitorización del consumo energético (es decir al nivel de máquina), el intervalo temporal, y el nivel del análisis de los datos son factores determinantes a la hora de localizar oportunidades para mejorar la eficiencia energética. Adicionalmente, la integración de datos de consumo energético en tiempo real con datos de producción (cuando existen altos niveles de estandarización en los procesos productivos y sus datos) es esencial para permitir que las factorías detallen la energía efectivamente consumida, su coste y CO2 emitido durante la producción de un producto o componente. Esto permite obtener una valiosa información a los gestores en el nivel decisor de la factoría así como a los consumidores y reguladores. ABSTRACT In today‘s manufacturing scenario, rising energy prices, increasing ecological awareness, and changing consumer behaviors are driving decision makers to prioritize green manufacturing. The Internet of Things (IoT) paradigm promises to increase the visibility and awareness of energy consumption, thanks to smart sensors and smart meters at the machine and production line level. Consequently, real-time energy consumption data from the manufacturing processes can be easily collected and then analyzed, to improve energy-aware decision-making. This thesis aims to investigate how to utilize the adoption of the Internet of Things at shop floor level to increase energy–awareness and the energy efficiency of discrete production processes. In order to achieve the main research goal, the research is divided into four sub-objectives, and is accomplished during four main phases (i.e., studies). In the first study, by relying on a comprehensive literature review and on experts‘ insights, the thesis defines energy-efficient production management practices that are enhanced and enabled by IoT technology. The first study also explains the benefits that can be obtained by adopting such management practices. Furthermore, it presents a framework to support the integration of gathered energy data into a company‘s information technology tools and platforms, which is done with the ultimate goal of highlighting how operational and tactical decision-making processes could leverage such data in order to improve energy efficiency. Considering the variable energy prices in one day, along with the availability of detailed machine status energy data, the second study proposes a mathematical model to minimize energy consumption costs for single machine production scheduling during production processes. This model works by making decisions at the machine level to determine the launch times for job processing, idle time, when the machine must be shut down, ―turning on‖ time, and ―turning off‖ time. This model enables the operations manager to implement the least expensive production schedule during a production shift. In the third study, the research provides a methodology to help managers implement the IoT at the production system level; it includes an analysis of current energy management and production systems at the factory, and recommends procedures for implementing the IoT to collect and analyze energy data. The methodology has been validated by a pilot study, where energy KPIs have been used to evaluate energy efficiency. In the fourth study, the goal is to introduce a way to achieve multi-level awareness of the energy consumed during production processes. The proposed method enables discrete factories to specify energy consumption, CO2 emissions, and the cost of the energy consumed at operation, production and order levels, while considering energy sources and fluctuations in energy prices. The results show that energy-efficient production management practices and decisions can be enhanced and enabled by the IoT. With the outcomes of the thesis, energy managers can approach the IoT adoption in a benefit-driven way, by addressing energy management practices that are close to the maturity level of the factory, target, production type, etc. The thesis also shows that significant reductions in energy costs can be achieved by avoiding high-energy price periods in a day. Furthermore, the thesis determines the level of monitoring energy consumption (i.e., machine level), the interval time, and the level of energy data analysis, which are all important factors involved in finding opportunities to improve energy efficiency. Eventually, integrating real-time energy data with production data (when there are high levels of production process standardization data) is essential to enable factories to specify the amount and cost of energy consumed, as well as the CO2 emitted while producing a product, providing valuable information to decision makers at the factory level as well as to consumers and regulators.
Resumo:
O uso de veículos aéreos não tripulados (VANTs) tem se tornado cada vez mais comum, principalmente em aplicações de uso civil. No cenário militar, o uso de VANTs tem focado o cumprimento de missões específicas que podem ser divididas em duas grandes categorias: sensoriamento remoto e transporte de material de emprego militar. Este trabalho se concentra na categoria do sensoriamento remoto. O trabalho foca a definição de um modelo e uma arquitetura de referência para o desenvolvimento de sensores inteligentes orientados a missões específicas. O principal objetivo destas missões é a geração de mapas temáticos. Neste trabalho são investigados processos e mecanismos que possibilitem a geração desta categoria de mapas. Neste sentido, o conceito de MOSA (Mission Oriented Sensor Array) é proposto e modelado. Como estudos de caso dos conceitos apresentados são propostos dois sistemas de mapeamento automático de fontes sonoras, um para o caso civil e outro para o caso militar. Essas fontes podem ter origem no ruído gerado por grandes animais (inclusive humanos), por motores de combustão interna de veículos ou por atividade de artilharia (incluindo caçadores). Os MOSAs modelados para esta aplicação são baseados na integração de dados provenientes de um sensor de imageamento termal e uma rede de sensores acústicos em solo. A integração das informações de posicionamento providas pelos sensores utilizados, em uma base cartográfica única, é um dos aspectos importantes tratados neste trabalho. As principais contribuições do trabalho são a proposta de sistemas MOSA, incluindo conceitos, modelos, arquitetura e a implementação de referência representada pelo sistema de mapeamento automático de fontes sonoras.
Resumo:
The sustainability strategy in urban spaces arises from reflecting on how to achieve a more habitable city and is materialized in a series of sustainable transformations aimed at humanizing different environments so that they can be used and enjoyed by everyone without exception and regardless of their ability. Modern communication technologies allow new opportunities to analyze efficiency in the use of urban spaces from several points of view: adequacy of facilities, usability, and social integration capabilities. The research presented in this paper proposes a method to perform an analysis of movement accessibility in sustainable cities based on radio frequency technologies and the ubiquitous computing possibilities of the new Internet of Things paradigm. The proposal can be deployed in both indoor and outdoor environments to check specific locations of a city. Finally, a case study in a controlled context has been simulated to validate the proposal as a pre-deployment step in urban environments.
Resumo:
A medição precisa da força é necessária para muitas aplicações, nomeadamente, para a determinação da resistência mecânica dos materiais, controlo de qualidade durante a produção, pesagem e segurança de pessoas. Dada a grande necessidade de medição de forças, têm-se desenvolvido, ao longo do tempo, várias técnicas e instrumentos para esse fim. Entre os vários instrumentos utilizados, destacam-se os sensores de força, também designadas por células de carga, pela sua simplicidade, precisão e versatilidade. O exemplo mais comum é baseado em extensómetros elétricos do tipo resistivo, que aliados a uma estrutura formam uma célula de carga. Este tipo de sensores possui sensibilidades baixas e em repouso, presença de offset diferente de zero, o que torna complexo o seu condicionamento de sinal. Este trabalho apresenta uma solução para o condicionamento e aquisição de dados para células de carga que, tanto quanto foi investigado, é inovador. Este dispositivo permite efetuar o condicionamento de sinal, digitalização e comunicação numa estrutura atómica. A ideia vai de encontro ao paradigma dos sensores inteligentes onde um único dispositivo eletrónico, associado a uma célula de carga, executa um conjunto de operações de processamento de sinal e transmissão de dados. Em particular permite a criação de uma rede ad-hoc utilizando o protocolo de comunicação IIC. O sistema é destinado a ser introduzido numa plataforma de carga, desenvolvida na Escola Superior de Tecnologia e Gestão de Bragança, local destinado à sua implementação. Devido à sua estratégia de conceção para a leitura de forças em três eixos, contém quatro células de carga, com duas saídas cada, totalizando oito saídas. O hardware para condicionamento de sinal já existente é analógico, e necessita de uma placa de dimensões consideráveis por cada saída. Do ponto de vista funcional, apresenta vários problemas, nomeadamente o ajuste de ganho e offset ser feito manualmente, tornando-se essencial um circuito com melhor desempenho no que respeita a lidar com um array de sensores deste tipo.
Resumo:
A densely built environment is a complex system of infrastructure, nature, and people closely interconnected and interacting. Vehicles, public transport, weather action, and sports activities constitute a manifold set of excitation and degradation sources for civil structures. In this context, operators should consider different factors in a holistic approach for assessing the structural health state. Vibration-based structural health monitoring (SHM) has demonstrated great potential as a decision-supporting tool to schedule maintenance interventions. However, most excitation sources are considered an issue for practical SHM applications since traditional methods are typically based on strict assumptions on input stationarity. Last-generation low-cost sensors present limitations related to a modest sensitivity and high noise floor compared to traditional instrumentation. If these devices are used for SHM in urban scenarios, short vibration recordings collected during high-intensity events and vehicle passage may be the only available datasets with a sufficient signal-to-noise ratio. While researchers have spent efforts to mitigate the effects of short-term phenomena in vibration-based SHM, the ultimate goal of this thesis is to exploit them and obtain valuable information on the structural health state. First, this thesis proposes strategies and algorithms for smart sensors operating individually or in a distributed computing framework to identify damage-sensitive features based on instantaneous modal parameters and influence lines. Ordinary traffic and people activities become essential sources of excitation, while human-powered vehicles, instrumented with smartphones, take the role of roving sensors in crowdsourced monitoring strategies. The technical and computational apparatus is optimized using in-memory computing technologies. Moreover, identifying additional local features can be particularly useful to support the damage assessment of complex structures. Thereby, smart coatings are studied to enable the self-sensing properties of ordinary structural elements. In this context, a machine-learning-aided tomography method is proposed to interpret the data provided by a nanocomposite paint interrogated electrically.
Resumo:
Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia
Resumo:
Stress/strain sensors constitute a class of devices with a global ever-growing market thanks to their use in many fields of modern life. They are typically constituted by thin metal foils deposited on flexible supports. However, the low inherent resistivity and limited flexibility of their constituents make them inadequate for several applications, such as measuring large movements in robotic systems and biological tissues. As an alternative to the traditional compounds, in the present work we will show the advantages to employ a smart material, polyaniline (PANI), prepared by an innovative environmentally friendly route, for force/strain sensor applications wherein simple processing, environmental friendliness and sensitivity are particularly required.