985 resultados para Small volume
Resumo:
BACKGROUND: Recently, studies have been conducted examining the efficacy of 3% hypertonic saline solution (HS) for the treatment of traumatic brain injury; however, few studies have analyzed the effects of 3% hemorrhagic shock during hemorrhagic shock. The aim of this study was to test the potential immunomodulatory benefits of 3% hemorrhagic shock resuscitation over standard fluid resuscitation. METHODS: Wistar rats were bled to a mean arterial pressure of 35 mm Hg and then randomized into 3 groups: those treated with lactated Ringer`s solution (LR; 33 mL/kg, n = 7), 3% HS (10 mL/kg, n = 7), and 7.5% HS (4 mL/kg, n = 7). Half of the extracted blood was reinfused after fluid resuscitation. Animals that did not undergo shock served as controls (n = 5). Four hours after hemorrhagic shock, blood was collected for the evaluation of tumor necrosis factor-a and interleukin-6 by enzyme immunoassay. Lung and intestinal samples were obtained for histopathologic analysis. RESULTS: Animals in the HS groups had significantly higher mean arterial pressure than those in the LR group 1 hour after treatment. Osmolarity and sodium levels were markedly elevated in the HS groups. Tumor necrosis factor-alpha and interleukin-6 levels were similar between the control and HS groups but significantly higher in the LR group (P < .05). The lung injury score was significantly higher in the LR group compared with the 7.5% HS and 3% HS groups (5.7 +/- 0.7, 2.1 +/- 0.4, and 2.7 +/- 0.5, respectively). Intestinal injury was attenuated in the 7.5% HS and 3% HS groups compared with the LR group (2.0 +/- 0.6, 2.3 +/- 0.4, and 5.9 +/- 0.6, respectively). CONCLUSIONS: A small-volume resuscitation strategy modulates the inflammatory response and decreases end-organ damage after HS. Three percent HS provides immunomodulatory and metabolic effects similar to those observed with conventional concentrations of HS. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Introduction: The aim of the present study was to test the accuracy of small-volume cone-beam computed tomography (CBCT) scanning in the detection of horizontal root fractures and to assess the influence of a metallic post. Methods: Forty teeth were divided into four groups based on the presence of metallic posts and horizontal root fracture. The teeth were examined by small-volume CBCT scanning at 0.2-mm voxel resolution. Three observers analyzed the samples for the presence of a horizontal root fracture. Sensitivity and specificity were calculated. Results: High values for accuracy (73%-88%) were obtained in the groups without a metallic post, and statistically significant differences were found when the group with a metallic post has been observed (55%-70%). Intraobserver agreement also showed statistically significant differences in the groups with a metallic post. Conclusions: Small-volume CBCT scanning showed high accuracy in detecting horizontal root fracture without a metallic post. However, the presence of a metallic post significantly reduced the specificity and sensitivity of this examination. (J Endod 2011;37:1456-1459)
Resumo:
Single-photon emission computed tomography (SPECT) is a non-invasive imaging technique, which provides information reporting the functional states of tissues. SPECT imaging has been used as a diagnostic tool in several human disorders and can be used in animal models of diseases for physiopathological, genomic and drug discovery studies. However, most of the experimental models used in research involve rodents, which are at least one order of magnitude smaller in linear dimensions than man. Consequently, images of targets obtained with conventional gamma-cameras and collimators have poor spatial resolution and statistical quality. We review the methodological approaches developed in recent years in order to obtain images of small targets with good spatial resolution and sensitivity. Multipinhole, coded mask- and slit-based collimators are presented as alternative approaches to improve image quality. In combination with appropriate decoding algorithms, these collimators permit a significant reduction of the time needed to register the projections used to make 3-D representations of the volumetric distribution of target’s radiotracers. Simultaneously, they can be used to minimize artifacts and blurring arising when single pinhole collimators are used. Representation images are presented, which illustrate the use of these collimators. We also comment on the use of coded masks to attain tomographic resolution with a single projection, as discussed by some investigators since their introduction to obtain near-field images. We conclude this review by showing that the use of appropriate hardware and software tools adapted to conventional gamma-cameras can be of great help in obtaining relevant functional information in experiments using small animals.
Resumo:
Optimization of photo-Fenton degradation of copper phthalocyanine blue was achieved by response surface methodology (RSM) constructed with the aid of a sequential injection analysis (SIA) system coupled to a homemade photo-reactor. Highest degradation percentage was obtained at the following conditions [H(2)O(2)]/[phthalocyanine] = 7, [H(2)O(2)]/[FeSO(4)] = 10, pH = 2.5, and stopped flow time in the photo reactor = 30 s. The SIA system was designed to prepare a monosegment containing the reagents and sample, to pump it toward the photo-reactor for the specified time and send the products to a flow-through spectrophotometer for monitoring the color reduction of the dye. Changes in parameters such as reagent molar ratios. residence time and pH were made by modifications in the software commanding the SI system, without the need for physical reconfiguration of reagents around the selection valve. The proposed procedure and system fed the statistical program with degradation data for fast construction of response surface plots. After optimization, 97% of the dye was degraded. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A few years ago, Cornish, Spergel and Starkman (CSS) suggested that a multiply connected small universe could allow for classical chaotic mixing as a preinflationary homogenization process. The smaller the volume, the more important the process. Also, a smaller universe has a greater probability of being spontaneously created. Previously DeWitt, Hart and Isham (DHI) calculated the Casimir energy for static multiply connected fat space-times. Because of the interest in small volume hyperbolic universes (e.g., CSS), we generalize the DHI calculation by making a numerical investigation of the Casimir energy for a conformally coupled, massive scalar field in a static universe, whose spatial sections are the Weeks manifold, the smallest universe of negative curvature known. In spite of being a numerical calculation, our result is in fact exact. It is shown that there is spontaneous vacuum excitation of low multipolar components.
Resumo:
Abstract Introduction We conducted the present study to examine the effects of hypertonic saline solution (7.5%) on cardiovascular function and splanchnic perfusion in experimental sepsis. Methods Anesthetized and mechanically ventilated mongrel dogs received an intravenous infusion of live Escherichia coli over 30 minutes. After 30 minutes, they were randomized to receive lactated Ringer's solution 32 ml/kg (LR; n = 7) over 30 minutes or 7.5% hypertonic saline solution 4 ml/kg (HS; n = 8) over 5 minutes. They were observed without additional interventions for 120 minutes. Cardiac output (CO), mean arterial pressure (MAP), portal and renal blood flow (PBF and RBF, respectively), gastric partial pressure of CO2 (pCO2; gas tonometry), blood gases and lactate levels were assessed. Results E. coli infusion promoted significant reductions in CO, MAP, PBF and RBF (approximately 45%, 12%, 45% and 25%, respectively) accompanied by an increase in lactate levels and systemic and mesenteric oxygen extraction (sO2ER and mO2ER). Widening of venous-arterial (approximately 15 mmHg), portal-arterial (approximately 18 mmHg) and gastric mucosal-arterial (approximately 55 mmHg) pCO2 gradients were also observed. LR and HS infusion transiently improved systemic and regional blood flow. However, HS infusion was associated with a significant and sustained reduction of systemic (18 ± 2.6 versus 38 ± 5.9%) and mesenteric oxygen extraction (18.5 ± 1.9 versus 36.5 ± 5.4%), without worsening other perfusional markers. Conclusion A large volume of LR or a small volume of HS promoted similar transient hemodynamic benefits in this sepsis model. However, a single bolus of HS did promote sustained reduction of systemic and mesenteric oxygen extraction, suggesting that hypertonic saline solution could be used as a salutary intervention during fluid resuscitation in septic patients.
Resumo:
"Technology assessment is a comprehensive form of policy research that examines the short- and long-term social consequences of the application or use of technology" (US Congress 1967).^ This study explored a research methodology appropriate for technology assessment (TA) within the health industry. The case studied was utilization of external Small-Volume Infusion Pumps (SVIP) at a cancer treatment and research center. Primary and secondary data were collected in three project phases. In Phase I, hospital prescription records (N = 14,979) represented SVIP adoption and utilization for the years 1982-1984. The Candidate Adoption-Use (CA-U) diffusion paradigm developed for this study was germane. Compared to classic and unorthodox curves, CA-U more accurately simulated empiric experience. The hospital SVIP 1983-1984 trends denoted assurance in prescribing chemotherapy and concomitant balloon SVIP efficacy and efficiency. Abandonment of battery pumps was predicted while exponential demand for balloon SVIP was forecast for 1985-1987. In Phase II, patients using SVIP (N = 117) were prospectively surveyed from July to October 1984; the data represented a single episode of therapy. The questionnaire and indices, specifically designed to measure the impact of SVIP, evinced face validity. Compeer group data were from pre-SVIP case reviews rather than from an inpatient sample. Statistically significant results indicated that outpatients using SVIP interacted socially more than inpatients using the alternative technology. Additionally, the hospital's education program effectively taught clients to discriminate between self care and professional SVIP services. In these contexts, there was sufficient evidence that the alternative technology restricted patients activity whereas SVIP permitted patients to function more independently and in a social lifestyle, thus adding quality to life. In Phase III, diffusion forecast and patient survey findings were combined with direct observation of clinic services to profile some economic dimensions of SVIP. These three project phases provide a foundation for executing: (1) cost effectiveness analysis of external versus internal infusors, (2) institutional resource allocation, and (3) technology deployment to epidemiology-significant communities. The models and methods tested in this research of clinical technology assessment are innovative and do assess biotechnology. ^
Resumo:
The quantity of interest for high-energy photon beam therapy recommended by most dosimetric protocols is the absorbed dose to water. Thus, ionization chambers are calibrated in absorbed dose to water, which is the same quantity as what is calculated by most treatment planning systems (TPS). However, when measurements are performed in a low-density medium, the presence of the ionization chamber generates a perturbation at the level of the secondary particle range. Therefore, the measured quantity is close to the absorbed dose to a volume of water equivalent to the chamber volume. This quantity is not equivalent to the dose calculated by a TPS, which is the absorbed dose to an infinitesimally small volume of water. This phenomenon can lead to an overestimation of the absorbed dose measured with an ionization chamber of up to 40% in extreme cases. In this paper, we propose a method to calculate correction factors based on the Monte Carlo simulations. These correction factors are obtained by the ratio of the absorbed dose to water in a low-density medium □D(w,Q,V1)(low) averaged over a scoring volume V₁ for a geometry where V₁ is filled with the low-density medium and the absorbed dose to water □D(w,QV2)(low) averaged over a volume V₂ for a geometry where V₂ is filled with water. In the Monte Carlo simulations, □D(w,QV2)(low) is obtained by replacing the volume of the ionization chamber by an equivalent volume of water, according to the definition of the absorbed dose to water. The method is validated in two different configurations which allowed us to study the behavior of this correction factor as a function of depth in phantom, photon beam energy, phantom density and field size.
Resumo:
Having broad knowledge of anatomy is essential for practicing dentistry. Certain anatomical structures call for detailed studies due to their anatomical and functional importance. Nevertheless, some structures are difficult to visualize and identify due to their small volume and complicated access. Such is the case of the parasympathetic ganglia located in the cranial part of the autonomic nervous system, which include: the ciliary ganglion (located deeply in the orbit, laterally to the optic nerve), the pterygopalatine ganglion (located in the pterygopalatine fossa), the submandibular ganglion (located laterally to the hyoglossus muscle, below the lingual nerve), and the otic ganglion (located medially to the mandibular nerve, right beneath the oval foramen). The aim of this study was to present these structures in dissected anatomic specimens and perform a comparative analysis regarding location and morphology. The proximity of the ganglia and associated nerves were also analyzed, as well as the number and volume of fibers connected to them. Human heads were dissected by planes, partially removing the adjacent structures to the point we could reach the parasympathetic ganglia. With this study, we concluded that there was no significant variation regarding the location of the studied ganglia. Morphologically, our observations concur with previous classical descriptions of the parasympathetic ganglia, but we observed variations regarding the proximity of the otic ganglion to the mandibular nerve. We also observed that there were variations regarding the number and volume of fiber bundles connected to the submandibular, otic, and pterygopalatine ganglia.
Resumo:
Transport properties and magnetization measurements of the K(x)MoO(2-delta) (0 <= x <= 0.25) compound are reported. The compound crystallizes in the oxygen deficient MoO(2) monoclinic structure with potassium atoms occupying interstitial positions. An unconventional metallic behavior with power-law temperature dependence is related to a magnetic ordering. Superconducting transition with small volume fraction is also observed near 7 K for a sample with low potassium composition.
Resumo:
The corrosion behaviour of AZ21, AZ501 and AZ91 was studied in 1 N NaCl at pH 11 by measuring electrochemical polarization curves, electrochemical AC impedance spectroscopy (EIS) and simultaneously measuring the hydrogen evolution rate and the: magnesium dissolution rate. The corrosion rates increased in the following order: AZ501 < AZ21 < AZ91. The: corrosion behaviour was related to alloy microstructure as revealed by optical and electron microscopy. The beta phase was very stable in the test solution and was an effective cathode. The beta phase served two roles, as a barrier and as a galvanic cathode. If the beta phase is present in the alpha matrix as intergranular precipitates with a small volume fraction, then the beta phase mainly serves as a galvanic cathode, and accelerates the corrosion of the alpha matrix. If the beta Fraction is high, then the beta phase may mainly act as an anodic barrier to inhibit the overall corrosion of the alloy. The composition and compositional distribution in the alpha phase is also crucial to the overall corrosion performance of dual phase alloys. Increasing the aluminum concentration in the alpha phase increases the anodic dissolution rate and also increases the cathodic hydrogen evolution rate. Increasing the zinc concentration in the alpha phase may have the opposite effect. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Background: Calcium is one of the triggers involved in ischemic neuronal death. Because hypotension is a strong predictor of outcome in traumatic brain injury (TBI), we tested the hypothesis that early fluid resuscitation blunts calcium influx in hemorrhagic shock associated to TBI. Methods: Fifteen ketamine-halothane anesthetized mongrel dogs (18.7 kg +/- 1.4 kg) underwent unilateral cryogenic brain injury. Blood was shed in 5 minutes to a target mean arterial pressure of 40 mm Hg to 45 mm Hg and maintained at these levels for 20 minutes (shed blood volume = 26 mL/kg +/- 7 mL/kg). Animals were then randomized into three groups: CT (controls, no fluid resuscitation), HS (7.5% NaCl, 4 mL/kg, in 5 minutes), and LR (lactate Ringer`s, 33 mL/kg, in 15 minutes). Twenty minutes later, a craniotomy was performed and cerebral biopsies were obtained next to the lesion (""clinical penumbra"") and from the corresponding contralateral side (""lesion`s mirror"") to determine intracellular calcium by fluorescence signals of Fura-2-loaded cells. Results: Controls remained hypotensive and in a low-flow state, whereas fluid resuscitation improved hemodynamic profile. There was a significant increase in intracellular calcium in the injured hemisphere in CT (1035 nM +/- 782 nM), compared with both HS (457 nM +/- 149 nM, p = 0.028) and LR (392 nM +/- 178 nM, p = 0.017), with no differences between HS and LR (p = 0.38). Intracellular calcium at the contralateral, uninjured hemisphere was 438 nM +/- 192 nM in CT, 510 nM +/- 196 nM in HS, and 311 nM +/- 51 nM in LR, with no significant differences between them. Conclusion: Both small volume hypertonic saline and large volume lactated Ringer`s blunts calcium influx in early stages of TBI associated to hemorrhagic shock. No fluid resuscitation strategy promotes calcium influx and further neural damage.
Resumo:
Background. Hydroxyethylstarch (HES) is a synthetic polymer of glucose that has been suggested for therapeutic use in long-term plasma expansion. The aim of this study was to test the hypothesis that the infusion of a small volume of HES may provide benefits in systemic and regional hemodynamics and metabolism in a brain-dead canine model compared with large volume crystalloid resuscitation. Methods. Fourteen mongrel dogs were subjected to a brain-death protocol by consecutive insufflations of a balloon catheter in the epidural space. One hour after induction of brain-death, the animals were randomly assigned to two groups: NS (0.9% NaCl, 33mL/kg), and HES (6% HES 450/0.7, 17mL/Kg). Systemic and regional hemodynamics were evaluated using Swan-Ganz, ultrasonic flowprobes, and arterial catheters. Serial blood samples were collected for blood gas, electrolyte, and serum chemistry analysis. Systemic, hepatic, and splanchnic O(2)-derived variables were also calculated. Results. Epidural balloon insufflations induced a significant increase in mean arterial pressure, cardiac output (MAP and CO, respectively), regional blood flow, and systemic vascular resistance. Following the hyperdynamic phase, severe hypotension with normalization of systemic and regional blood flow was observed. Fluid resuscitation induced a prompt increase in MAP, CO, and portal vein blood flow, and a significant reduction in systemic and pulmonary vascular resistance. There were no differences between groups in metabolic indices, liver function tests (LFTs), or renal function tests. HES was more effective than NS in restoring cardiac performance in the first 2h after fluid resuscitation (P < 0.05). Both tested solutions partially and temporarily restored systemic and regional oxygen delivery. Conclusion. Small volumes of 6% HES 450/0.7 improved cardiovascular performance and provided the same regional hemodynamic and metabolic benefits of large volumes of isotonic crystalloid solutions. (C) 2011 Elsevier Inc. All rights reserved.
A high efficient and consistent method for harvesting large volumes of high-titre lentiviral vectors
Resumo:
Lentiviral vectors pseudotyped with vesicular stomatitis virus glycoprotein (VSV-G) are emerging as the vectors of choice for in vitro and in vivo gene therapy studies. However, the current method for harvesting lentivectors relies upon ultracentrifugation at 50 000 g for 2 h. At this ultra-high speed, rotors currently in use generally have small volume capacity. Therefore, preparations of large volumes of high-titre vectors are time-consuming and laborious to perform. In the present study, viral vector supernatant harvests from vector-producing cells (VPCs) were pre-treated with various amounts of poly-L-lysine (PLL) and concentrated by low speed centrifugation. Optimal conditions were established when 0.005% of PLL (w/v) was added to vector supernatant harvests, followed by incubation for 30 min and centrifugation at 10 000 g for 2 h at 4 degreesC. Direct comparison with ultracentrifugation demonstrated that the new method consistently produced larger volumes (6 ml) of high-titre viral vector at 1 x 10(8) transduction unit (TU)/ml (from about 3000 ml of supernatant) in one round of concentration. Electron microscopic analysis showed that PLL/viral vector formed complexes, which probably facilitated easy precipitation at low-speed concentration (10 000 g), a speed which does not usually precipitate viral particles efficiently. Transfection of several cell lines in vitro and transduction in vivo in the liver with the lentivector/PLL complexes demonstrated efficient gene transfer without any significant signs of toxicity. These results suggest that the new method provides a convenient means for harvesting large volumes of high-titre lentivectors, facilitate gene therapy experiments in large animal or human gene therapy trials, in which large amounts of lentiviral vectors are a prerequisite.