1000 resultados para Slippage control


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work reveals that parallel gripper flat-jaw configuration affects grasping effectiveness. An important finding is the fact that object grasp reliability is influenced significantly by gripper's ability to develop high resistance to object rotation in the gripper. The concept of effective torque radius, which increases resistance to object rotation in the gripper, is presented here and can be extrapolated to other grasping devices and grasping strategies to improve their reliability and make them more effective. Grippers with full-jaw contact surface and those with discrete contact areas have been investigated using simple experimental setups. Essential mathematical models needed for analytical investigation, based on simple mechanics for full-jaw contact surfaces and discrete-jaw contact surfaces, are presented. These may be useful for gripper jaw design purposes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper details the further improvements obtained by redesigning a previously offered Manipulation Controller Framework to provide support to an innovative, friction-based object slippage detection strategy employed by the robotic object manipulator. This upgraded Manipulation Controller Framework includes improved slippage detection functionality and a streamlined architecture designed to improve controller robustness, reliability and speed. Improvements include enhancements to object slippage detection strategy, the removal of the decision making module and integration of its functionality into the Motion Planner, and the stream-lining of the Motion Planner to improve its effectiveness. It is anticipated that this work will be useful to researchers developing integrated robot controller architectures and slippage control.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents experimental results obtained using a friction-based slippage and tangential force sensing device that has been developed for the purpose of reliable object slippage prevention during robotic manipulation. The experimental results obtained demonstrate that the developed slippage sensing strategy is rugged and reliable even in its current “rough prototype” state of development. This work has the potential to yield a low cost and highly customisable slippage and tangential force sensing device for a variety of robotic object grasping and manipulation applications. It is envisaged that the work presented here will be beneficial to researchers in the area of object slippage prevention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ACCURATE sensing of vehicle position and attitude is still a very challenging problem in many mobile robot applications. The mobile robot vehicle applications must have some means of estimating where they are and in which direction they are heading. Many existing indoor positioning systems are limited in workspace and robustness because they require clear lines-of-sight or do not provide absolute, driftfree measurements.The research work presented in this dissertation provides a new approach to position and attitude sensing system designed specifically to meet the challenges of operation in a realistic, cluttered indoor environment, such as that of an office building, hospital, industrial or warehouse. This is accomplished by an innovative assembly of infrared LED source that restricts the spreading of the light intensity distribution confined to a sheet of light and is encoded with localization and traffic information. This Digital Infrared Sheet of Light Beacon (DISLiB) developed for mobile robot is a high resolution absolute localization system which is simple, fast, accurate and robust, without much of computational burden or significant processing. Most of the available beacon's performance in corridors and narrow passages are not satisfactory, whereas the performance of DISLiB is very encouraging in such situations. This research overcomes most of the inherent limitations of existing systems.The work further examines the odometric localization errors caused by over count readings of an optical encoder based odometric system in a mobile robot due to wheel-slippage and terrain irregularities. A simple and efficient method is investigated and realized using an FPGA for reducing the errors. The detection and correction is based on redundant encoder measurements. The method suggested relies on the fact that the wheel slippage or terrain irregularities cause more count readings from the encoder than what corresponds to the actual distance travelled by the vehicle.The application of encoded Digital Infrared Sheet of Light Beacon (DISLiB) system can be extended to intelligent control of the public transportation system. The system is capable of receiving traffic status input through a GSM (Global System Mobile) modem. The vehicles have infrared receivers and processors capable of decoding the information, and generating the audio and video messages to assist the driver. The thesis further examines the usefulness of the technique to assist the movement of differently-able (blind) persons in indoor or outdoor premises of his residence.The work addressed in this thesis suggests a new way forward in the development of autonomous robotics and guidance systems. However, this work can be easily extended to many other challenging domains, as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION Cardiac myocytes utilize three high-capacity Na transport processes whose precise function can determine myocyte fate and the triggering of arrhythmias in pathological settings. We present recent results on the regulation of all three transporters that may be important for an understanding of cardiac function during ischemia/reperfusion episodes. METHODS AND RESULTS Refined ion selective electrode (ISE) techniques and giant patch methods were used to analyze the function of cardiac Na/K pumps, Na/Ca exchange (NCX1), and Na/H exchange (NHE1) in excised cardiac patches and intact myocytes. To consider results cohesively, simulations were developed that account for electroneutrality of the cytoplasm, ion homeostasis, water homeostasis (i.e., cell volume), and cytoplasmic pH. The Na/K pump determines the average life-time of Na ions (3-10 minutes) as well as K ions (>30 minutes) in the cytoplasm. The long time course of K homeostasis can determine the time course of myocyte volume changes after ion homeostasis is perturbed. In excised patches, cardiac Na/K pumps turn on slowly (-30 seconds) with millimolar ATP dependence, when activated for the first time. In steady state, however, pumps are fully active with <0.2 mM ATP and are nearly unaffected by high ADP (2 mM) and Pi (10 mM) concentrations as may occur in ischemia. NCX1s appear to operate with slippage that contributes to background Na influx and inward current in heart. Thus, myocyte Na levels may be regulated by the inactivation reactions of the exchanger which are both Na- and proton-dependent. NHE1 also undergo strong Na-dependent inactivation, whereby a brief rise of cytoplasmic Na can cause inactivation that persists for many minutes after cytoplasmic Na is removed. This mechanism is blocked by pertussis toxin, suggesting involvement of a Na-dependent G-protein. Given that maximal NCX1- and NHE1-mediated ion fluxes are much greater than maximal Na/K pump-mediated Na extrusion in myocytes, the Na-dependent inactivation mechanisms of NCX1 and NHE1 may be important determinants of cardiac Na homeostasis. CONCLUSIONS Na/K pumps appear to be optimized to continue operation when energy reserves are compromised. Both NCX1 and NHE1 activities are regulated by accumulation of cytoplasmic Na. These principles may importantly control cardiac cytoplasmic Na and promote myocyte survival during ischemia/reperfusion episodes by preventing Ca overload.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new theoretical development and modelling related to the requirement of the minimum number of sensors necessary for slippage prevention in robotic grasping. A fundamental experimental investigation has been conducted to support the newly developed postulate. A series of basic experiments proved that it is possible to evaluate the contributions of various sensors to slippage prevention and control in robotic grasping. The use of three discrete physical sensors, one for each of the three sensing functions (normal, tangential and slippage), has been proven to be the most reliable combination for slippage prevention in robotic grasping. It was also proven that the best performance from a two-sensor combination can be achieved when normal grasp force and tangential force are both monitored in the grasping process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An unstructured mesh �nite volume discretisation method for simulating di�usion in anisotropic media in two-dimensional space is discussed. This technique is considered as an extension of the fully implicit hybrid control-volume �nite-element method and it retains the local continuity of the ux at the control volume faces. A least squares function recon- struction technique together with a new ux decomposition strategy is used to obtain an accurate ux approximation at the control volume face, ensuring that the overall accuracy of the spatial discretisation maintains second order. This paper highlights that the new technique coincides with the traditional shape function technique when the correction term is neglected and that it signi�cantly increases the accuracy of the previous linear scheme on coarse meshes when applied to media that exhibit very strong to extreme anisotropy ratios. It is concluded that the method can be used on both regular and irregular meshes, and appears independent of the mesh quality.