1000 resultados para Sistemas n~ao-lineares. Sistemas lineares. Subespaços de Krylov.GMRES, Precondicionamento
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
A geração de trajectórias de robôs em tempo real é uma tarefa muito complexa, não
existindo ainda um algoritmo que a permita resolver de forma eficaz. De facto, há
controladores eficientes para trajectórias previamente definidas, todavia, a adaptação a
variações imprevisíveis, como sendo terrenos irregulares ou obstáculos, constitui ainda um
problema em aberto na geração de trajectórias em tempo real de robôs.
Neste trabalho apresentam-se modelos de geradores centrais de padrões de locomoção
(CPGs), inspirados na biologia, que geram os ritmos locomotores num robô quadrúpede.
Os CPGs são modelados matematicamente por sistemas acoplados de células (ou
neurónios), sendo a dinâmica de cada célula dada por um sistema de equações diferenciais
ordinárias não lineares. Assume-se que as trajectórias dos robôs são constituídas por esta
parte rítmica e por uma parte discreta. A parte discreta pode ser embebida na parte rítmica,
(a.1) como um offset ou (a.2) adicionada às expressões rítmicas, ou (b) pode ser calculada
independentemente e adicionada exactamente antes do envio dos sinais para as articulações
do robô. A parte discreta permite inserir no passo locomotor uma perturbação, que poderá
estar associada à locomoção em terrenos irregulares ou à existência de obstáculos na
trajectória do robô. Para se proceder á análise do sistema com parte discreta, será variado o
parâmetro g. O parâmetro g, presente nas equações da parte discreta, representa o offset do
sinal após a inclusão da parte discreta.
Revê-se a teoria de bifurcação e simetria que permite a classificação das soluções
periódicas produzidas pelos modelos de CPGs com passos locomotores quadrúpedes. Nas
simulações numéricas, usam-se as equações de Morris-Lecar e o oscilador de Hopf como
modelos da dinâmica interna de cada célula para a parte rítmica. A parte discreta é
modelada por um sistema inspirado no modelo VITE. Medem-se a amplitude e a
frequência de dois passos locomotores para variação do parâmetro g, no intervalo [-5;5].
Consideram-se duas formas distintas de incluir a parte discreta na parte rítmica: (a) como
um (a.1) offset ou (a.2) somada nas expressões que modelam a parte rítmica, e (b) somada
ao sinal da parte rítmica antes de ser enviado às articulações do robô. No caso (a.1),
considerando o oscilador de Hopf como dinâmica interna das células, verifica-se que a amplitude e frequência se mantêm constantes para -5
Resumo:
Modelos matemáticos não-lineares utilizados na análise de desempenho de sistemas de irrigação foram comparados visando a indicar o que se ajusta melhor aos dados observados em perfis de distribuição da água aplicada na irrigação. Foram considerados quatro modelos de probabilidade (Normal, Log-normal, Gama e Beta) e dois modelos potenciais (modelos Silva e Karmeli), aplicados a 91 casos de avaliação de desempenho da irrigação. A comparação entre as curvas de freqüência acumulada da soma de quadrados dos erros, obtida do ajuste de cada modelo aos dados, revelou que o modelo Silva é estatisticamente o melhor entre os modelos testados.
Resumo:
O objetivo desta dissertação é a paralelização e a avaliação do desempenho de alguns métodos de resolução de sistemas lineares esparsos. O DECK foi utilizado para implementação dos métodos em um cluster de PCs. A presente pesquisa é motivada pela vasta utilização de Sistemas de Equações Lineares em várias áreas científicas, especialmente, na modelagem de fenômenos físicos através de Equações Diferenciais Parciais (EDPs). Nessa área, têm sido desenvolvidas pesquisas pelo GMC-PAD – Grupo de Matemática da Computação e Processamento de Alto Desempenho da UFRGS, para as quais esse trabalho vem contribuindo. Outro fator de motivação para a realização dessa pesquisa é a disponibilidade de um cluster de PCs no Instituto de Informática e do ambiente de programação paralela DECK – Distributed Execution and Communication Kernel. O DECK possibilita a programação em ambientes paralelos com memória distribuída e/ou compartilhada. Ele está sendo desenvolvido pelo grupo de pesquisas GPPD – Grupo de Processamento Paralelo e Distribuído e com a paralelização dos métodos, nesse ambiente, objetiva-se também validar seu funcionamento e avaliar seu potencial e seu desempenho. Os sistemas lineares originados pela discretização de EDPs têm, em geral, como características a esparsidade e a numerosa quantidade de incógnitas. Devido ao porte dos sistemas, para a resolução é necessária grande quantidade de memória e velocidade de processamento, característicos de computações de alto desempenho. Dois métodos de resolução foram estudados e paralelizados, um da classe dos métodos diretos, o Algoritmo de Thomas e outro da classe dos iterativos, o Gradiente Conjugado. A forma de paralelizar um método é completamente diferente do outro. Isso porque o método iterativo é formado por operações básicas de álgebra linear, e o método direto é formado por operações elementares entre linhas e colunas da matriz dos coeficientes do sistema linear. Isso permitiu a investigação e experimentação de formas distintas de paralelismo. Do método do Gradiente Conjugado, foram feitas a versão sem précondicionamento e versões pré-condicionadas com o pré-condicionador Diagonal e com o pré-condicionador Polinomial. Do Algoritmo de Thomas, devido a sua formulação, somente a versão básica foi feita. Após a paralelização dos métodos de resolução, avaliou-se o desempenho dos algoritmos paralelos no cluster, através da realização de medidas do tempo de execução e foram calculados o speedup e a eficiência. As medidas empíricas foram realizadas com variações na ordem dos sistemas resolvidos e no número de nodos utilizados do cluster. Essa avaliação também envolveu a comparação entre as complexidades dos algoritmos seqüenciais e a complexidade dos algoritmos paralelos dos métodos. Esta pesquisa demonstra o desempenho de métodos de resolução de sistemas lineares esparsos em um ambiente de alto desempenho, bem como as potencialidades do DECK. Aplicações que envolvam a resolução desses sistemas podem ser realizadas no cluster, a partir do que já foi desenvolvido, bem como, a investigação de précondicionadores, comparação do desempenho com outros métodos de resolução e paralelização dos métodos com outras ferramentas possibilitando uma melhor avaliação do DECK.
Resumo:
A paralelização de métodos de resolução de sistemas de equações lineares e não lineares é uma atividade que tem concentrado várias pesquisas nos últimos anos. Isto porque, os sistemas de equações estão presentes em diversos problemas da computação cientí ca, especialmente naqueles que empregam equações diferenciais parciais (EDPs) que modelam fenômenos físicos, e que precisam ser discretizadas para serem tratadas computacionalmente. O processo de discretização resulta em sistemas de equações que necessitam ser resolvidos a cada passo de tempo. Em geral, esses sistemas têm como características a esparsidade e um grande número de incógnitas. Devido ao porte desses sistemas é necessária uma grande quantidade de memória e velocidade de processamento, sendo adequado o uso de computação de alto desempenho na obtenção da solução dos mesmos. Dentro desse contexto, é feito neste trabalho um estudo sobre o uso de métodos de decomposição de domínio na resolução de sistemas de equações em paralelo. Esses métodos baseiam-se no particionamento do domínio computacional em subdomínios, de modo que a solução global do problema é obtida pela combinação apropriada das soluções de cada subdomínio. Uma vez que diferentes subdomínios podem ser tratados independentemente, tais métodos são atrativos para ambientes paralelos. Mais especi camente, foram implementados e analisados neste trabalho, três diferentes métodos de decomposição de domínio. Dois desses com sobreposição entre os subdomínios, e um sem sobreposição. Dentre os métodos com sobreposição foram estudados os métodos aditivo de Schwarz e multiplicativo de Schwarz. Já dentre os métodos sem sobreposição optou-se pelo método do complemento de Schur. Todas as implementações foram desenvolvidas para serem executadas em clusters de PCs multiprocessados e estão incorporadas ao modelo HIDRA, que é um modelo computacional paralelo multifísica desenvolvido no Grupo de Matemática da Computação e Processamento de Alto Desempenho (GMCPAD) para a simulação do escoamento e do transporte de substâncias em corpos de águas.
Resumo:
Este trabalho visa realizar o estudo do comportamento dinâmico de um eixo rotor flexível, modelado segundo a teoria de Euler-Bernoulli e caracterizar as respostas periódicas de sistemas LTI (sistemas lineares invariantes no tempo) e sistemas fracamente não lineares de ordem arbitrária. Para tanto, é utilizada a base dinâmica gerada pela resposta impulso ou solução fundamental. O comportamento dinâmico de um eixo rotor flexível foi discutido em termos da função de Green espacial e calculada de maneira não-modal. Foi realizado um estudo do problema de autovalor para o caso de um um eixo rotor biapoiado. As freqüências são obtidas e os modos escritos em termos da base dinâmica e da velocidade de rotação. As respostas periódicas de sistemas LTI, utilizadas nas aproximações com sistemas fracamente não lineares, são obtidas, independentemente da ordem do sistema, como um operador integral onde o núcleo é a função de Green T-periódica. Esta função é caracterizada em termos das propriedades de continuidade, periodicidade e salto da função de Green T-periódica, e da base dinâmica Simulações foram realizadas para sistemas concentrados, matriciais e escalares, com o objetivo de mostrar a validade da metodologia desenvolvida com as propriedades da função de Green T-periódica. Foi abordado um modelo não-linear para uma centrífuga utilizada na indústria textil [Starzinski, 1977].
Resumo:
This paper presents a new multi-model technique of dentification in ANFIS for nonlinear systems. In this technique, the structure used is of the fuzzy Takagi-Sugeno of which the consequences are local linear models that represent the system of different points of operation and the precursors are membership functions whose adjustments are realized by the learning phase of the neuro-fuzzy ANFIS technique. The models that represent the system at different points of the operation can be found with linearization techniques like, for example, the Least Squares method that is robust against sounds and of simple application. The fuzzy system is responsible for informing the proportion of each model that should be utilized, using the membership functions. The membership functions can be adjusted by ANFIS with the use of neural network algorithms, like the back propagation error type, in such a way that the models found for each area are correctly interpolated and define an action of each model for possible entries into the system. In multi-models, the definition of action of models is known as metrics and, since this paper is based on ANFIS, it shall be denominated in ANFIS metrics. This way, ANFIS metrics is utilized to interpolate various models, composing a system to be identified. Differing from the traditional ANFIS, the created technique necessarily represents the system in various well defined regions by unaltered models whose pondered activation as per the membership functions. The selection of regions for the application of the Least Squares method is realized manually from the graphic analysis of the system behavior or from the physical characteristics of the plant. This selection serves as a base to initiate the linear model defining technique and generating the initial configuration of the membership functions. The experiments are conducted in a teaching tank, with multiple sections, designed and created to show the characteristics of the technique. The results from this tank illustrate the performance reached by the technique in task of identifying, utilizing configurations of ANFIS, comparing the developed technique with various models of simple metrics and comparing with the NNARX technique, also adapted to identification
Resumo:
Este trabalho propõe um ambiente computacional aplicado ao ensino de sistemas de controle, denominado de ModSym. O software implementa uma interface gráfica para a modelagem de sistemas físicos lineares e mostra, passo a passo, o processamento necessário à obtenção de modelos matemáticos para esses sistemas. Um sistema físico pode ser representado, no software, de três formas diferentes. O sistema pode ser representado por um diagrama gráfico a partir de elementos dos domínios elétrico, mecânico translacional, mecânico rotacional e hidráulico. Pode também ser representado a partir de grafos de ligação ou de diagramas de fluxo de sinal. Uma vez representado o sistema, o ModSym possibilita o cálculo de funções de transferência do sistema na forma simbólica, utilizando a regra de Mason. O software calcula também funções de transferência na forma numérica e funções de sensibilidade paramétrica. O trabalho propõe ainda um algoritmo para obter o diagrama de fluxo de sinal de um sistema físico baseado no seu grafo de ligação. Este algoritmo e a metodologia de análise de sistemas conhecida por Network Method permitiram a utilização da regra de Mason no cálculo de funções de transferência dos sistemas modelados no software
Resumo:
A neuro-fuzzy system consists of two or more control techniques in only one structure. The main characteristic of this structure is joining one or more good aspects from each technique to make a hybrid controller. This controller can be based in Fuzzy systems, artificial Neural Networks, Genetics Algorithms or rein forced learning techniques. Neuro-fuzzy systems have been shown as a promising technique in industrial applications. Two models of neuro-fuzzy systems were developed, an ANFIS model and a NEFCON model. Both models were applied to control a ball and beam system and they had their results and needed changes commented. Choose of inputs to controllers and the algorithms used to learning, among other information about the hybrid systems, were commented. The results show the changes in structure after learning and the conditions to use each one controller based on theirs characteristics
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Neste trabalho é proposta uma metodologia de rastreamento de sinais e rejeição de distúrbios aplicada a sistemas não-lineares. Para o projeto do sistema de rastreamento, projeta-se os controladores fuzzy M(a) e N(a) que minimizam o limitante superior da norma H∞ entre o sinal de referência r(t) e o sinal de erro de rastreamento e(t), sendo e(t) a diferença entre a entrada de referência e a saída do sistema z(t). No método de rejeição de distúrbio utiliza-se a realimentação dinâmica da saída através de um controlador fuzzy Kc(a) que minimiza o limitante superior da norma H∞ entre o sinal de entrada exógena w(t) e o sinal de saída z(t). O procedimento de projeto proposto considera as não-linearidades da planta através dos modelos fuzzy Takagi-Sugeno. Os métodos são equacionados utilizando-se inequações matriciais lineares (LMIs), que quando factíveis, podem ser facilmente solucionados por algoritmos de convergência polinomial. Por fim, um exemplo ilustra a viabilidade da metodologia proposta.
Resumo:
In this work we studied the method to solving linear equations system, presented in the book titled "The nine chapters on the mathematical art", which was written in the first century of this era. This work has the intent of showing how the mathematics history can be used to motivate the introduction of some topics in high school. Through observations of patterns which repeats itself in the presented method, we were able to introduce, in a very natural way, the concept of linear equations, linear equations system, solution of linear equations, determinants and matrices, besides the Laplacian development for determinants calculations of square matrices of order bigger than 3, then considering some of their general applications
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents a methodology for solving a set of linear sparse equations on vector computers. The new methodology is able to exploit the matrix and vector sparsities. The implementation was made on a CRAY Y-MP 2E/232 computer and the results were taken from electric power systems with 118, 320, 725 and 1729 buses. The proposed methodology was compared with three previous methods and the results show the superior performance of the new one.
Resumo:
Relaxed conditions for the stability study of nonlinear, continuous and discrete-time systems given by fuzzy models are presented. A theoretical analysis shows that the proposed method provides better or at least the same results of the methods presented in the literature. Digital simulations exemplify this fact. These results are also used for the fuzzy regulators design. The nonlinear systems are represented by the fuzzy models proposed by Takagi and Sugeno. The stability analysis and the design of controllers are described by LMIs (Linear Matrix Inequalities), that can be solved efficiently by convex programming techniques. The specification of the decay rate, constraints on control input and output are also described by LMIs. Finally, the proposed design method is applied in the control of an inverted pendulum.