1000 resultados para Sistemas de spin
Resumo:
Neste trabalho definimos três modelos de escadas de spin integráveis novos que correspondem a variações de um modelo de escada de spin baseado na simetria SU(4). Os modelos são exatamente solúveis através do método do ansatz de Bethe e as equações do ansatz de Bethe, os autovalores de energia e o gap de spin são derivados e propriedades físicas interessantes são discutidas. Inicialmente apresentamos um modelo de escada de spin integrável que possui um parâmetro livre além do acomplamento ao longo dos degraus. Determinamos a dependência do parâmetro anisotrópico na transição de fase entre uma região com gap e outra sem gap. Nós também mostramos que o modelo é um caso especial de uma Hamiltoniana mais geral que possui três parâmetros livres. A susceptibilidade magnética em função da temperatura é obtida numericamente e sua dependência no parâmetro anisotrópico é determinada explicitamente. Uma comparação entre o gap de spin obtido através da curva de susceptibilidade magnética e aquele obtido das equações do ansatz de Bethe é feita e uma boa concordância encontrada. A conexão com alguns compostos é apresentada e mostramos que os nossos resultados ajustam bem a curva da susceptibilidade magnética dos compostos KCuCI3, CU2(C5H12N2hC14e (C5H12NhCuBr4. A seguir nós propomos dois tipos diferentes de modelos integráveis com impurezas. Mostramos em ambos os casos que uma transição de fase entre uma região com gap e outra sem gap ocorre para um valor crítico do acoplamento ao longo dos degraus. Além disso, a dependência das impurezas na transição de fase é determinada explicitamente. Em um dos modelos o gap diminui com o aumento da intensidade da impureza A. E, fixando a intensidade de impureza A, é observada uma redução do gap com o aumento da concentração de impurezas. Este resultado está qualitativamente de acordo com resultados experimentais.
Resumo:
Estudamos transições de fases quânticas em gases bosônicos ultrafrios aprisionados em redes óticas. A física desses sistemas é capturada por um modelo do tipo Bose-Hubbard que, no caso de um sistema sem desordem, em que os átomos têm interação de curto alcance e o tunelamento é apenas entre sítios primeiros vizinhos, prevê a transição de fases quântica superfluido-isolante de Mott (SF-MI) quando a profundidade do potencial da rede ótica é variado. Num primeiro estudo, verificamos como o diagrama de fases dessa transição muda quando passamos de uma rede quadrada para uma hexagonal. Num segundo, investigamos como a desordem modifica essa transição. No estudo com rede hexagonal, apresentamos o diagrama de fases da transição SF-MI e uma estimativa para o ponto crítico do primeiro lobo de Mott. Esses resultados foram obtidos usando o algoritmo de Monte Carlo quântico denominado Worm. Comparamos nossos resultados com os obtidos a partir de uma aproximação de campo médio e com os de um sistema com uma rede ótica quadrada. Ao introduzir desordem no sistema, uma nova fase emerge no diagrama de fases do estado fundamental intermediando a fase superfluida e a isolante de Mott. Essa nova fase é conhecida como vidro de Bose (BG) e a transição de fases quântica SF-BG que ocorre nesse sistema gerou muitas controvérsias desde seus primeiros estudos iniciados no fim dos anos 80. Apesar dos avanços em direção ao entendimento completo desta transição, a caracterização básica das suas propriedades críticas ainda é debatida. O que motivou nosso estudo, foi a publicação de resultados experimentais e numéricos em sistemas tridimensionais [Yu et al. Nature 489, 379 (2012), Yu et al. PRB 86, 134421 (2012)] que violam a lei de escala $\\phi= u z$, em que $\\phi$ é o expoente da temperatura crítica, $z$ é o expoente crítico dinâmico e $ u$ é o expoente do comprimento de correlação. Abordamos essa controvérsia numericamente fazendo uma análise de escalonamento finito usando o algoritmo Worm nas suas versões quântica e clássica. Nossos resultados demonstram que trabalhos anteriores sobre a dependência da temperatura de transição superfluido-líquido normal com o potencial químico (ou campo magnético, em sistemas de spin), $T_c \\propto (\\mu-\\mu_c)^\\phi$, estavam equivocados na interpretação de um comportamento transiente na aproximação da região crítica genuína. Quando os parâmetros do modelo são modificados de maneira a ampliar a região crítica quântica, simulações com ambos os modelos clássico e quântico revelam que a lei de escala $\\phi= u z$ [com $\\phi=2.7(2)$, $z=3$ e $ u = 0.88(5)$] é válida. Também estimamos o expoente crítico do parâmetro de ordem, encontrando $\\beta=1.5(2)$.
Resumo:
El presente proyecto plantea utilizar integralmente la técnica de Resonancia Magnética Nuclear en sólidos como un medio experimental que permite entender fenómenos de la física fundamental, como así también realizar aplicaciones de interés en el campo de la química, los desarrollos farmacéuticos y la biología. Novedosas técnicas experimentales serán empleadas, en conjunción con otras más tradicionales, en la caracterización de nuevas estructuras poliméricas acomplejadas a metales, membranas biológicas y compuestos de interés farmacéutico en vías de desarrollo, los cuales presentan el fenómeno de polimorfismo . Esto se llevará a cabo complementando los resultados de RMN en sólidos con técnicas tanto espectroscópicas como analíticas (Infrarrojo, Difracción de Rayos X, Calorimetría, RMN en solución) y trabajo interdisciplinario. Paralelamente al desarrollo de estos temas, profundizaremos mediante investigación básica, en la compresión de la dinámica cuántica y el surgimiento de la irreversibilidad en sistemas de espines nucleares. Observaremos en particular la generación, evolución y control de las coherencias cuánticas múltiples en sistemas cuánticos abiertos, lo cual nos da información sobre tamaño de clusters de espines. Esto permitirá la correcta implementación de secuencias de pulsos sofisticadas, como así también desarrollar nuevos métodos de medición aplicados a la caracterización estructural y a la dinámica molecular de sólidos complejos. Debemos resaltar que este proyecto está conectado con aspectos tanto básicos como aplicados de la RMN en sólidos como técnica experimental, la cual se desarrolla en el país únicamente en FaMAF-UNC. Se nutre además de trabajo multidisciplinario promoviendo la colaboración con investigadores y becarios de distintas áreas (física, química, farmacia, biología) provenientes de distintos puntos del país. Finalmente podemos afirmar que este plan impulsa la aplicación de la física básica proyectada a diferentes áreas del conocimiento, en el ámbito de la provincia de Córdoba. The aim of the present proyect is to use Nuclear Magnetic Resonance (NMR) as a complete techique that allows the understanding of fundamental physics phenomena and, at the same time, it leads to important applications in the fields of chemistry, pharmaceutical developments and biology. New experiments will be used together with traditional ones, in the characterization of new metal-polymer complexes, biological membranes and pharmaceutical compounds, some of them presenting polymorfism. NMR experiments will be complemented with diverse spectroscopic and analytical techniques: Infrared, X ray Diffraction, Thermal Analysis, solution NMR, as well as multidisciplinary investigation. Additionally, the present proyect plans to study in depth several aspects of quantum dynamics phenomena and decoherence in nuclear spin systems. The present proyect is connected with basic and applied aspects of the solid state NMR technique, developed in our country, only at FaMAF-UNC. It is is composed by multidisciplinary work and it promotes the collaboration with researchers and students coming from different fields (physics, chemistry, pharmaceutical developments, biology) and different points of our country.
Resumo:
Pós-graduação em Física - IFT
Resumo:
Dissertação de mestrado em Marketing e Estratégia
Resumo:
En este proyecto continuaremos estudiando algunas propiedades dinámicas de diferentes sistemas complejos, con especial énfasis en vidrios de spin, redes neuronales y autómatas celulares aplicados a modelos de evolución biológica. En vidrios de spin estamos analizando la dependencia entre los diagramas dinámicos obtenidos utilizando la técnica de propagación de daños y aquellos obtenidos estudiando el decaimiento de la función de autocorrelación. Este estudio pretende contribuir a entender los mecanismos microscópicos responsables del surgimiento de "ageing", entendiendo por éste a la dependencia de algunas cantidades con la historia de la muestra. En redes neuronales seguiremos dos líneas: en primer lugar, introducir componentes más realistas desde el punto de vista biológico, a fin de entender los mecanismos fisiológicos de las diferentes funciones cerebrales. En segundo lugar, estamos interesados en utilizar el modelo de Hopfield para red neuronal como por ejemplo de sistema complejo controlable a partir del cual estamos tratando de entender cómo la estructura del espacio de fases influye en la dinámica del sistema. Finalmente, continuaremos trabajando con el modelo Bak-Sneppen para evolución biológica de especies interactuantes y el surgimiento de "ageing" en el estado auto crítico. Objetivos generales y específicos (...) 1. Estudio de la relación entre el fenómeno de "ageing" y la sensibilidad del proceso dinámico a las condiciones iniciales. (...) 2. Estudio del efecto de la formación de dominios en la dinámica de no-equilibrio de modelos de vidrios de spin y ferromagnéticos. (...) 3. Estudio de la influencia de la estructura del espacio de configuraciones en la dinámica de no-equilibrio. (...) 4. Inclusión de ingredientes biológicamente realistas. (...) 5. Auto criticalidad forzada por secuencias deterministas. (...)
Resumo:
Existe actualmente un interés muy difundido por los fluidos anisotrópicos (cristales líquidos, polímeros) debido a la gran cantidad de aplicaciones que se pueden realizar con ellos (por ejemplo en la fabricación de displays, en medicina, biología, etc.). Su estudio también planea interesantes problemas desde un punto de vista de la física fundamental. Sin embargo, a pesar de esto es muy poco lo que se conoce acerca de la dinámica molecular, y el problema está abierto. Las técnicas más apropiadas en este campo son el estudio de las propiedades dieléctricas y la RMN (relajación spin-red). En esta última, hay una gran actividad en el campo experimental con el desarrollo de numerosas técnicas nuevas. Sin embargo, desde el punto de vista de la teoría de la relajación se continúa utilizando aproximaciones semiclásicas. Entonces, es necesario revisar las hipótesis fundamentales de la teoría de la RMN con el fin de extender su campo de aplicación a problemas complejos como los que plantean los fluidos anistrópicos. El propósito general de esta línea de trabajo es el de extender la teoría semiclásica de relajación nuclear en RMN para incluir la naturaleza cuántica del fenómeno. Al cabo de esta investigación se espera poder describir la relajación del orden dipolar en mesofaces ordenadas como los cristales líquidos, ferrofluídos, etc. (...) Al cabo de este período se espera avanzar en las siguientes tareas: 1. Contar con una ecuación maestra para la matriz densidad de spin lo suficientemente general para incluir los efectos mencionados, pero que a la vez permita la comparación con los resultados experimentales. Dejando de lado las suposiciones clásicas de alta temperatura y orden débil, y en el marco de la suposición de temperatura de spin, se estudiará una expansión de la ecuación maestra en inversas de las temperaturas de la red y de spin. Conservando términos de orden mayor que lineal (aproximación clásica) e introduciendo las interacciones spin-spin durante el tiempo de correlación de la red (memoria microscópica) se analizará la dependencia con la frecuencia de Larmor de T1D y T1Z. Las interacciones spin-spin se introducirán mediante un método perturbativo de operadores. 2. Comprender la razón física de la diferencia de comportamiento con la frecuencia de Larmor de los parámetros T1D y T1Z. 3. Generalizar el análisis para aplicarlo al tiempo de relajación spin-red en el sistema rotante T1r.
Resumo:
Este trabalho apresenta uma investigação experimental sobre as propriedades magnéticas e de transporte elétrico de sistemas caracterizados por desordem e frustração. Tais sistemas são amostras granulares do supercondutor de alta temperatura crítica YBa2Cu3O7-δ e amostras do tipo vidro-de-spin e reentrantes das ligas magnéticas diluídas AuMn 8at% e AuFe xat% (x = 8, 12, 15, 18 e 21). No supercondutor granular foram estudados os efeitos de flutuações termodinâmicas na magnetocondutividade nas proximidades da transição supercondutora e a linha de irreversibilidades magnéticas. A transição para o estado de resistência nula é um processo que ocorre em duas etapas. Inicialmente, a transição de pareamento estabiliza a supercondutividade no interior dos grãos. A transição de coerência ocorre em temperaturas inferiores e ativa ligações fracas entre os grãos através de um processo do tipo percolação. O regime que antecede a transição de coerência é caracterizado por flutuações na fase do parâmetro de ordem. A linha de irreversibilidades magnéticas, estudada a partir da magnetoresistência e magnetização DC, revela um comportamento do tipo Almeida-Thouless em baixos campos magnéticos aplicados, seguido de um crossover, em µ0H = 0.1 T, para um comportamento do tipo Gabay-Toulouse. A linha de irreversibilidades é interpretada como sendo uma manifestação experimental de uma transição de vidro chiral. As ligas magnéticas diluídas foram estudadas através do efeito Hall extraordinário. Os resultados mostram claramente que dois termos de sinais contrários contribuem para este efeito nestes sistemas. Em particular, é observada uma anomalia no coeficiente de Hall extraordinário em temperaturas próximas à temperatura de ordenamento dos vidros-de-spin e de “canting” dos reentrantes que não é prevista por nenhuma teoria convencional de efeito Hall. A interpretação dos resultados é feita em termos do modelo de vidro chiral, mostrando a importância de uma contribuição de origem puramente chiral. Esta é a primeira vez que a chiralidade, uma propriedade intrínseca de sistemas desordenados e frustrados, é observada experimentalmente de modo direto.
Resumo:
Apresentamos aqui o modelo esférico quântico de vidro de spin usando a aproximação de recozimento. São calculadas a energia livre, bem como a temperatura crítica em função do momentum de inércia e a entropia. São consideradas interações aleatórias de longo alcance (campo médio) com distribuição normal de média zero, e a energia cinética de cada spin. O cálculo é feito utilizando o formalismo funcional de Feynman de integrais de caminhos. O limite clássico é apresentado e coincide com o limite conhecido de teorias anteriores.
Resumo:
High-precision calculations of the correlation functions and order parameters were performed in order to investigate the critical properties of several two-dimensional ferro- magnetic systems: (i) the q-state Potts model; (ii) the Ashkin-Teller isotropic model; (iii) the spin-1 Ising model. We deduced exact relations connecting specific damages (the difference between two microscopic configurations of a model) and the above mentioned thermodynamic quanti- ties which permit its numerical calculation, by computer simulation and using any ergodic dynamics. The results obtained (critical temperature and exponents) reproduced all the known values, with an agreement up to several significant figures; of particular relevance were the estimates along the Baxter critical line (Ashkin-Teller model) where the exponents have a continuous variation. We also showed that this approach is less sensitive to the finite-size effects than the standard Monte-Carlo method. This analysis shows that the present approach produces equal or more accurate results, as compared to the usual Monte Carlo simulation, and can be useful to investigate these models in circumstances for which their behavior is not yet fully understood
Resumo:
There is presently a worldwide interest in artificial magnetic systems which guide research activities in universities and companies. Thin films and multilayers have a central role, revealing new magnetic phases which often lead to breakthroughs and new technology standards, never thought otherwise. Surface and confinement effects cause large impact in the magnetic phases of magnetic materials with bulk spatially periodic patterns. New magnetic phases are expected to form in thin film thicknesses comparable to the length of the intrinsic bulk magnetic unit cell. Helimagnetic materials are prototypes in this respect, since the bulk magnetic phases consist in periodic patterns with the length of the helical pitch. In this thesis we study the magnetic phases of thin rare-earth films, with surfaces oriented along the (002) direction. The thesis includes the investigation of the magnetic phases of thin Dy and Ho films, as well as the thermal hysteresis cycles of Dy thin films. The investigation of the thermal hysteresis cycles of thin Dy films has been done in collaboration with the Laboratory of Magnetic Materials of the University of Texas, at Arlington. The theoretical modeling is based on a self-consistent theory developed by the Group of Magnetism of UFRN. Contributions from the first and second neighbors exchange energy, from the anisotropy energy and the Zeeman energy are calculated in a set of nonequivalent magnetic ions, and the equilibrium magnetic phases, from the Curie temperature up to the Nèel temperature, are determined in a self-consistent manner, resulting in a vanishing torque in the magnetic ions at all planes across the thin film. Our results reproduce the known isothermal and iso-field curves of bulk Dy and Ho, and the known spin-slip phases of Ho, and indicate that: (i) the confinement in thin films leads to a new magnetic phase, with alternate helicity, which leads to the measured thermal hysteresis of Dy ultrathin films, with thicknesses ranging from 4 nm to 16 nm; (ii) thin Dy films have anisotropy dominated surface lock-in phases, with alignment of surface spins along the anisotropy easy axis directions, similar to the known spin-slip phases of Ho ( which form in the bulk and are commensurate to the crystal lattice); and (iii) the confinement in thin films change considerably the spin-slip patterns of Ho.
Resumo:
We studied the spin waves modes that can propagate in magnetic multilayers composed of ferromagnetic metallic films in the nanometer scale. The ferromagnetic films (iron) are separated and coupled through the nonmagnetic spacer films (chromium). The films that make up the multilayer are stacked in a quasiperiodic pattern, following the Fibonacci and double period sequences. We used a phenomenological theory taking into account: the Zeeman energy (between the ferromagnetic films and the external magnetic field), the energy of the magneto-crystalline anisotropy (present in the ferromagnetic films), the energy of the bilinear and biquadratic couplings (between the ferromagnetic films) and the energy of the dipole-dipole interaction (between the ferromagnetic films), to describe the system. The total magnetic energy of the system is numerically minimized and the equilibrium angles of the magnetization of each ferromagnetic film are determined. We solved the equation of motion of the multilayer to find the dispersion relation for the system and, as a consequence, the spin waves modes frequencies. Our theoretical results show that, in the case of trilayers (Fe/Cr/Fe), our model reproduces with excellent agreement experimental results of Brillouin light scattering, known from the literature, by adjusting the physical parameters of the nanofilms. Furthermore, we generalize the model to N ferromagnetic layers which allowed us to determine how complex these systems become when we increase the number of components. It is worth noting that our theoretical calculations generalize all the results known from the literature
Resumo:
In this paper we investigate the spectra of band structures and transmittance in magnonic quasicrystals that exhibit the so-called deterministic disorders, specifically, magnetic multilayer systems, which are built obeying to the generalized Fibonacci (only golden mean (GM), silver mean (SM), bronze mean (BM), copper mean (CM) and nickel mean (NM) cases) and k-component Fibonacci substitutional sequences. The theoretical model is based on the Heisenberg Hamiltonian in the exchange regime, together with the powerful transfer matrix method, and taking into account the RPA approximation. The magnetic materials considered are simple cubic ferromagnets. Our main interest in this study is to investigate the effects of quasiperiodicity on the physical properties of the systems mentioned by analyzing the behavior of spin wave propagation through the dispersion and transmission spectra of these structures. Among of these results we detach: (i) the fragmentation of the bulk bands, which in the limit of high generations, become a Cantor set, and the presence of the mig-gap frequency in the spin waves transmission, for generalized Fibonacci sequence, and (ii) the strong dependence of the magnonic band gap with respect to the parameters k, which determines the amount of different magnetic materials are present in quasicrystal, and n, which is the generation number of the sequence k-component Fibonacci. In this last case, we have verified that the system presents a magnonic band gap, whose width and frequency region can be controlled by varying k and n. In the exchange regime, the spin waves propagate with frequency of the order of a few tens of terahertz (THz). Therefore, from a experimental and technological point of view, the magnonic quasicrystals can be used as carriers or processors of informations, and the magnon (the quantum spin wave) is responsible for this transport and processing