977 resultados para Singularities in Feynman propagators
Resumo:
Gauge fields in the light front are traditionally addressed via, the employment of an algebraic condition n·A = 0 in the Lagrangian density, where Aμ is the gauge field (Abelian or non-Abelian) and nμ is the external, light-like, constant vector which defines the gauge proper. However, this condition though necessary is not sufficient to fix the gauge completely; there still remains a residual gauge freedom that must be addressed appropriately. To do this, we need to define the condition (n·A) (∂·A) = 0 with n·A = 0 = ∂·A. The implementation of this condition in the theory gives rise to a gauge boson propagator (in momentum space) leading to conspicuous nonlocal singularities of the type (k·n)-α where α = 1, 2. These singularities must be conveniently treated, and by convenient we mean not only mathemathically well-defined but physically sound and meaningful as well. In calculating such a propagator for one and two noncovariant gauge bosons those singularities demand from the outset the use of a prescription such as the Mandelstam-Leibbrandt (ML) one. We show that the implementation of the ML prescription does not remove certain pathologies associated with zero modes. However we present a causal, singularity-softening prescription and show how to keep causality from being broken without the zero mode nuisance and letting only the propagation of physical degrees of freedom.
Resumo:
Serving as a powerful tool for extracting localized variations in non-stationary signals, applications of wavelet transforms (WTs) in traffic engineering have been introduced; however, lacking in some important theoretical fundamentals. In particular, there is little guidance provided on selecting an appropriate WT across potential transport applications. This research described in this paper contributes uniquely to the literature by first describing a numerical experiment to demonstrate the shortcomings of commonly-used data processing techniques in traffic engineering (i.e., averaging, moving averaging, second-order difference, oblique cumulative curve, and short-time Fourier transform). It then mathematically describes WT’s ability to detect singularities in traffic data. Next, selecting a suitable WT for a particular research topic in traffic engineering is discussed in detail by objectively and quantitatively comparing candidate wavelets’ performances using a numerical experiment. Finally, based on several case studies using both loop detector data and vehicle trajectories, it is shown that selecting a suitable wavelet largely depends on the specific research topic, and that the Mexican hat wavelet generally gives a satisfactory performance in detecting singularities in traffic and vehicular data.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
One of the main difficulties in studying quantum field theory, in the perturbative regime, is the calculation of D-dimensional Feynman integrals. In general, one introduces the so-called Feynman parameters and, associated with them, the cumbersome parametric integrals. Solving these integrals beyond the one-loop level can be a difficult task. The negative-dimensional integration method (NDIM) is a technique whereby such a problem is dramatically reduced. We present the calculation of two-loop integrals in three different cases: scalar ones with three different masses, massless with arbitrary tensor rank, with and N insertions of a two-loop diagram.
Resumo:
Let f:C-n, 0 --> C-p, 0 be a K-finite map germ, and let i = (i(1),..., i(k)) be a Boardman symbol such that Sigma(i) has codimension n in the corresponding jet space J(k)(n, p). When its iterated successors have codimension larger than n, the paper gives a list of situations in which the number of Sigma(i) points that appear in a generic deformation of f can be computed algebraically by means of Jacobian ideals of f. This list can be summarised in the following way: f must have rank n - i(1) and, in addition, in the case p = 6, f must be a singularity of type Sigma(i2.i2).
Resumo:
In this article we describe some qualitative and geometric aspects of nonsmooth dynamical systems theory around typical singularities. We also establish an interaction between nonsmooth systems and geometric singular perturbation theory. Such systems are represented by discontinuous vector fields on R(l), l >= 2, where their discontinuity set is a codimension one algebraic variety. By means of a regularization process proceeded by a blow-up technique we are able to bring about some results that bridge the space between discontinuous systems and singularly perturbed smooth systems. We also present an analysis of a subclass of discontinuous vector fields that present transient behavior in the 2-dimensional case, and we dedicate a section to providing sufficient conditions in order for our systems to have local asymptotic stability.
Alternate treatments of jacobian singularities in polar coordinates within finite-difference schemes
Resumo:
Jacobian singularities of differential operators in curvilinear coordinates occur when the Jacobian determinant of the curvilinear-to-Cartesian mapping vanishes, thus leading to unbounded coefficients in partial differential equations. Within a finite-difference scheme, we treat the singularity at the pole of polar coordinates by setting up complementary equations. Such equations are obtained by either integral or smoothness conditions. They are assessed by application to analytically solvable steady-state heat-conduction problems.
Resumo:
Recently a new type of cosmological singularity has been postulated for infinite barotropic index w in the equation of state p = wρ of the cosmological fluid, but vanishing pressure and density at the singular event. Apparently the barotropic index w would be the only physical quantity to blow up at the singularity. In this talk we would like to discuss the strength of such singularities and compare them with other types. We show that they are weak singularities
Resumo:
The singularities which arise when there is a sudden change of boundary conditions are modelled using spectral shape interpolation functions. The procedure can be used for elasticity as well as potential theory and to any degree of accuracy with respect to the smooth part of the curve.
Resumo:
The singularities in Dromo are characterized in this paper, both from an analytical and a numerical perspective. When the angular momentum vanishes, Dromo may encounter a singularity in the evolution equations. The cancellation of the angular momentum occurs in very speci?c situations and may be caused by the action of strong perturbations. The gravitational attraction of a perturbing planet may lead to rapid changes in the angular momentum of the particle. In practice, this situation may be encountered during deep planetocentric ?ybys. The performance of Dromo is evaluated in di?erent scenarios. First, Dromo is validated for integrating the orbit of Near Earth Asteroids. Resulting errors are of the order of the diameter of the asteroid. Second, a set of theoretical ?ybys are designed for analyzing the performance of the formulation in the vicinity of the singularity. New sets of Dromo variables are proposed in order to minimize the dependency of Dromo on the angular momentum. A slower time scale is introduced, leading to a more stable description of the ?yby phase. Improvements in the overall performance of the algorithm are observed when integrating orbits close to the singularity.
Resumo:
For each pair (n, k) with 1 ≤ k < n, we construct a tight frame (ρλ : λ ∈ Λ) for L2 (Rn), which we call a frame of k-plane ridgelets. The intent is to efficiently represent functions that are smooth away from singularities along k-planes in Rn. We also develop tools to help decide whether k-plane ridgelets provide the desired efficient representation. We first construct a wavelet-like tight frame on the X-ray bundle χn,k—the fiber bundle having the Grassman manifold Gn,k of k-planes in Rn for base space, and for fibers the orthocomplements of those planes. This wavelet-like tight frame is the pushout to χn,k, via the smooth local coordinates of Gn,k, of an orthonormal basis of tensor Meyer wavelets on Euclidean space Rk(n−k) × Rn−k. We then use the X-ray isometry [Solmon, D. C. (1976) J. Math. Anal. Appl. 56, 61–83] to map this tight frame isometrically to a tight frame for L2(Rn)—the k-plane ridgelets. This construction makes analysis of a function f ∈ L2(Rn) by k-plane ridgelets identical to the analysis of the k-plane X-ray transform of f by an appropriate wavelet-like system for χn,k. As wavelets are typically effective at representing point singularities, it may be expected that these new systems will be effective at representing objects whose k-plane X-ray transform has a point singularity. Objects with discontinuities across hyperplanes are of this form, for k = n − 1.
Resumo:
We discuss Fermi-edge singularity effects on the linear and nonlinear transient response of an electron gas in a doped semiconductor. We use a bosonization scheme to describe the low-energy excitations, which allows us to compute the time and temperature dependence of the response functions. Coherent control of the energy absorption at resonance is analyzed in the linear regime. It is shown that a phase shift appears in the coherent control oscillations, which is not present in the excitonic case. The nonlinear response is calculated analytically and used to predict that four wave-mixing experiments would present a Fermi-edge singularity when the exciting energy is varied. A new dephasing mechanism is predicted in doped samples that depends linearly on temperature and is produced by the low-energy bosonic excitations in the conduction band.