972 resultados para Singular vectors
Resumo:
The ECMWF full-physics and dry singular vector (SV) packages, using a dry energy norm and a 1-day optimization time, are applied to four high impact European cyclones of recent years that were almost universally badly forecast in the short range. It is shown that these full-physics SVs are much more relevant to severe cyclonic development than those based on dry dynamics plus boundary layer alone. The crucial extra ingredient is the representation of large-scale latent heat release. The severe winter storms all have a long, nearly straight region of high baroclinicity stretching across the Atlantic towards Europe, with a tongue of very high moisture content on its equatorward flank. In each case some of the final-time top SV structures pick out the region of the actual storm. The initial structures were generally located in the mid- to low troposphere. Forecasts based on initial conditions perturbed by moist SVs with opposite signs and various amplitudes show the range of possible 1-day outcomes for reasonable magnitudes of forecast error. In each case one of the perturbation structures gave a forecast very much closer to the actual storm than the control forecast. Deductions are made about the predictability of high-impact extratropical cyclone events. Implications are drawn for the short-range forecast problem and suggestions made for one practicable way to approach short-range ensemble forecasting. Copyright © 2005 Royal Meteorological Society.
Resumo:
An investigation is made of the impact of a full linearized physical (moist) parameterization package on extratropical singular vectors (SVs) using the ECMWF integrated forecasting system (IFS). Comparison is made for one particular period with a dry physical package including only vertical diffusion and surface drag. The crucial extra ingredient in the full package is found to be the large-scale latent heat release. Consistent with basic theory, its inclusion results in a shift to smaller horizontal scales and enhanced growth for the SVs. Whereas, for the dry SVs, T42 resolution is sufficient, the moist SVs require T63 to resolve their structure and growth. A 24-h optimization time appears to be appropriate for the moist SVs because of the larger growth of moist SVs compared with dry SVs. Like dry SVs, moist SVs tend to occur in regions of high baroclinicity, but their location is also influenced by the availability of moisture. The most rapidly growing SVs appear to enhance or reduce large-scale rain in regions ahead of major cold fronts. The enhancement occurs in and ahead of a cyclonic perturbation and the reduction in and ahead of an anticyclonic perturbation. Most of the moist SVs for this situation are slightly modified versions of the dry SVs. However, some occur in new locations and have particularly confined structures. The most rapidly growing SV is shown to exhibit quite linear behavior in the nonlinear model as it grows from 0.5 to 12 hPa in 1 day. For 5 times this amplitude the structure is similar but the growth is about half as the perturbation damps a potential vorticity (PV) trough or produces a cutoff, depending on its sign.
Resumo:
A key aspect in designing an ecient decadal prediction system is ensuring that the uncertainty in the ocean initial conditions is sampled optimally. Here, we consider one strategy to address this issue by investigating the growth of optimal perturbations in the HadCM3 global climate model (GCM). More specically, climatically relevant singular vectors (CSVs) - the small perturbations which grow most rapidly for a specic initial condition - are estimated for decadal timescales in the Atlantic Ocean. It is found that reliable CSVs can be estimated by running a large ensemble of integrations of the GCM. Amplication of the optimal perturbations occurs for more than 10 years, and possibly up to 40 years. The identi ed regions for growing perturbations are found to be in the far North Atlantic, and these perturbations cause amplication through an anomalous meridional overturning circulation response. Additionally, this type of analysis potentially informs the design of future ocean observing systems by identifying the sensitive regions where small uncertainties in the ocean state can grow maximally. Although these CSVs are expensive to compute, we identify ways in which the process could be made more ecient in the future.
Resumo:
We study the feasibility of using the singular vector technique to create initial condition perturbations for short-range ensemble prediction systems (SREPS) focussing on predictability of severe local storms and in particular deep convection. For this a new final time semi-norm based on the convective available potential energy (CAPE) is introduced. We compare singular vectors using the CAPE-norm with SVs using the more common total energy (TE) norm for a 2-week summer period in 2007, which includes a case of mesoscale extreme rainfall in the south west of Finland. The CAPE singular vectors perturb the CAPE field by increasing the specific humidity and temperature of the parcel and increase the lapse rate above the parcel in the lower troposphere consistent with physical considerations. The CAPE-SVs are situated in the lower troposphere. This in contrast to TE-SVs with short optimization times which predominantly remain in the high troposphere. By examining the time evolution of the CAPE singular values we observe that the convective event in the south west of Finland is clearly associated with high CAPE singular values.
Resumo:
Moist singular vectors (MSV) have been applied successfully to predicting mid-latitude storms growing in association with latent heat of condensation. Tropical cyclone sensitivity has also been assessed. Extending this approach to more general tropical weather systems here, MSVs are evaluated for understanding and predicting African easterly waves, given the importance of moist processes in their development. First results, without initial moisture perturbations, suggest MSVs may be used advantageously. Perturbations bear similar structural and energy profiles to previous idealised non-linear studies and observations. Strong sensitivities prevail in the metrics and trajectories chosen, and benefits of initial moisture perturbations should be appraised. Copyright © 2009 Royal Meteorological Society
Resumo:
Four-dimensional variational data assimilation (4D-Var) combines the information from a time sequence of observations with the model dynamics and a background state to produce an analysis. In this paper, a new mathematical insight into the behaviour of 4D-Var is gained from an extension of concepts that are used to assess the qualitative information content of observations in satellite retrievals. It is shown that the 4D-Var analysis increments can be written as a linear combination of the singular vectors of a matrix which is a function of both the observational and the forecast model systems. This formulation is used to consider the filtering and interpolating aspects of 4D-Var using idealized case-studies based on a simple model of baroclinic instability. The results of the 4D-Var case-studies exhibit the reconstruction of the state in unobserved regions as a consequence of the interpolation of observations through time. The results also exhibit the filtering of components with small spatial scales that correspond to noise, and the filtering of structures in unobserved regions. The singular vector perspective gives a very clear view of this filtering and interpolating by the 4D-Var algorithm and shows that the appropriate specification of the a priori statistics is vital to extract the largest possible amount of useful information from the observations. Copyright © 2005 Royal Meteorological Society
Resumo:
The ECMWF ensemble weather forecasts are generated by perturbing the initial conditions of the forecast using a subset of the singular vectors of the linearised propagator. Previous results show that when creating probabilistic forecasts from this ensemble better forecasts are obtained if the mean of the spread and the variability of the spread are calibrated separately. We show results from a simple linear model that suggest that this may be a generic property for all singular vector based ensemble forecasting systems based on only a subset of the full set of singular vectors.
Resumo:
The desire to create a statistical or mathematical model, which would allow predicting the future changes in stock prices, was born many years ago. Economists and mathematicians are trying to solve this task by applying statistical analysis and physical laws, but there are still no satisfactory results. The main reason for this is that a stock exchange is a non-stationary, unstable and complex system, which is influenced by many factors. In this thesis the New York Stock Exchange was considered as the system to be explored. A topological analysis, basic statistical tools and singular value decomposition were conducted for understanding the behavior of the market. Two methods for normalization of initial daily closure prices by Dow Jones and S&P500 were introduced and applied for further analysis. As a result, some unexpected features were identified, such as a shape of distribution of correlation matrix, a bulk of which is shifted to the right hand side with respect to zero. Also non-ergodicity of NYSE was confirmed graphically. It was shown, that singular vectors differ from each other by a constant factor. There are for certain results no clear conclusions from this work, but it creates a good basis for the further analysis of market topology.
Resumo:
The impact of targeted sonde observations on the 1-3 day forecasts for northern Europe is evaluated using the Met Office four-dimensional variational data assimilation scheme and a 24 km gridlength limited-area version of the Unified Model (MetUM). The targeted observations were carried out during February and March 2007 as part of the Greenland Flow Distortion Experiment, using a research aircraft based in Iceland. Sensitive area predictions using either total energy singular vectors or an ensemble transform Kalman filter were used to predict where additional observations should be made to reduce errors in the initial conditions of forecasts for northern Europe. Targeted sonde data was assimilated operationally into the MetUM. Hindcasts show that the impact of the sondes was mixed. Only two out of the five cases showed clear forecast improvement; the maximum forecast improvement seen over the verifying region was approximately 5% of the forecast error 24 hours into the forecast. These two cases are presented in more detail: in the first the improvement propagates into the verification region with a developing polar low; and in the second the improvement is associated with an upper-level trough. The impact of cycling targeted data in the background of the forecast (including the memory of previous targeted observations) is investigated. This is shown to cause a greater forecast impact, but does not necessarily lead to a greater forecast improvement. Finally, the robustness of the results is assessed using a small ensemble of forecasts.
Resumo:
Using the recently-developed mean–variance of logarithms (MVL) diagram, together with the TIGGE archive of medium-range ensemble forecasts from nine different centres, an analysis is presented of the spatiotemporal dynamics of their perturbations, showing how the differences between models and perturbation techniques can explain the shape of their characteristic MVL curves. In particular, a divide is seen between ensembles based on singular vectors or empirical orthogonal functions, and those based on bred vector, Ensemble Transform with Rescaling or Ensemble Kalman Filter techniques. Consideration is also given to the use of the MVL diagram to compare the growth of perturbations within the ensemble with the growth of the forecast error, showing that there is a much closer correspondence for some models than others. Finally, the use of the MVL technique to assist in selecting models for inclusion in a multi-model ensemble is discussed, and an experiment suggested to test its potential in this context.
Resumo:
Biplot graphics are widely employed in the study of the genotypeenvironment interactions, but they are only a graphical tool without a statistical hypothesis test. The singular values and scores (singular vectors) used in biplots correspond to specific estimates of its parameters, and the use of uncertainty measures may lead to different conclusions from those provided by a simple visual evaluation. The aim of this work is to estimate the genotype-environment interactions, using AMMI analysis, through Bayesian approach. Therefore the credibility intervals can be used for decision-making in different situations of analyses. It allows to verify the consistency of the selection and recommendation of cultivars. Two analyses were performed. The first analysis looked into 10 regular commercial hybrids and all possible 45 hybrids obtained from them. They were assessed in 15 locations. The second analysis evaluated 28 hybrids in 35 different environments, with imbalance data. The ellipses were grouped according to the standard of interaction in the biplot. The AMMI analysis with a Bayesian approach proved to be a complete analysis of stability and adaptability, which provides important information that may help the breeder in their decisions. The regions of credibility, built in the biplots, allow to perform an accurate selection and a precise genotype recommendation, with a level of credibility. Genotypes and environments can be grouped according to the existing interaction pattern, which makes possible to formulate specific recommendations. Moreover the environments can be evaluated, in order to find out which ones contribute similarly to the interaction and those to be discarted. The method makes possible to deal with imbalanced data in a natural way, showing efficiency for multienvironment trials. The prediction takes into account instability and the interaction standard of the observed data, in order to establish a direct comparison between genotypes of both 1st and 2nd seasons.
Resumo:
In a preliminary study in Juruti, a mining municipality in western Pará State, Brazil, 12 out of 21 patients suspected of presenting cutaneous leishmaniasis showed positive PCR (SSUrDNA and G6PD): Leishmania (Viannia) braziliensis (9/12; 75%) and L. (V.) sp. (3/12; 25%). Entomological studies in the same location revealed the presence of 12 different phlebotomine species (n =105). One of the most common species was Lutzomyia (Psychodopygus) complexa (17%) which is both highly anthropophilic and a known vector of L. (V.) braziliensis in other regions of Pará. These preliminary findings should serve to guide future epidemiological surveillance in Juruti.
Resumo:
FAPESP, CNPq, CAPES