991 resultados para Simulation platform


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing number of players that operate in power systems leads to a more complex management. In this paper a new multi-agent platform is proposed, which simulates the real operation of power system players. MASGriP – A Multi-Agent Smart Grid Simulation Platform is presented. Several consumer and producer agents are implemented and simulated, considering real characteristics and different goals and actuation strategies. Aggregator entities, such as Virtual Power Players and Curtailment Service Providers are also included. The integration of MASGriP agents in MASCEM (Multi-Agent System for Competitive Electricity Markets) simulator allows the simulation of technical and economical activities of several players. An energy resources management architecture used in microgrids is also explained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-agent approaches have been widely used to model complex systems of distributed nature with a large amount of interactions between the involved entities. Power systems are a reference case, mainly due to the increasing use of distributed energy sources, largely based on renewable sources, which have potentiated huge changes in the power systems’ sector. Dealing with such a large scale integration of intermittent generation sources led to the emergence of several new players, as well as the development of new paradigms, such as the microgrid concept, and the evolution of demand response programs, which potentiate the active participation of consumers. This paper presents a multi-agent based simulation platform which models a microgrid environment, considering several different types of simulated players. These players interact with real physical installations, creating a realistic simulation environment with results that can be observed directly in the reality. A case study is presented considering players’ responses to a demand response event, resulting in an intelligent increase of consumption in order to face the wind generation surplus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation document deals with the development of a project, over a span of more than two years, carried out within the scope of the Arrowhead Framework and which bears my personal contribution in several sections. The final part of the project took place during a visiting period at the university of Luleå. The Arrowhead Project is an European project, belonging to the ARTEMIS association, which aims to foster new technologies and unify the access to them into an unique framework. Such technologies include the Internet of Things phe- nomenon, Smart Houses, Electrical Mobility and renewable energy production. An application is considered compliant with such framework when it respects the Service Oriented Architecture paradigm and it is able to interact with a set of defined components called Arrowhead Core Services. My personal contribution to this project is given by the development of several user-friendly API, published in the project's main repository, and the integration of a legacy system within the Arrowhead Framework. The implementation of this legacy system was initiated by me in 2012 and, after many improvements carried out by several developers in UniBO, it has been again significantly modified this year in order to achieve compatibility. The system consists of a simulation of an urban scenario where a certain amount of electrical vehicles are traveling along their specified routes. The vehicles are con-suming their battery and, thus, need to recharge at the charging stations. The electrical vehicles need to use a reservation mechanism to be able to recharge and avoid waiting lines, due to the long recharge process. The integration with the above mentioned framework consists in the publication of the services that the system provides to the end users through the instantiation of several Arrowhead Service Producers, together with a demo Arrowhead- compliant client application able to consume such services.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical Protection systems and Automatic Voltage Regulators (AVR) are essential components of actual power plants. Its installation and setting is performed during the commissioning, and it needs extensive experience since any failure in this process or in the setting, may entails some risk not only for the generator of the power plant, but also for the reliability of the power grid. In this paper, a real time power plant simulation platform is presented as a tool for improving the training and learning process on electrical protections and automatic voltage regulators. The activities of the commissioning procedure which can be practiced are described, and the applicability of this tool for improving the comprehension of this important part of the power plants is discussed. A commercial AVR and a multifunction protective relay have been tested with satisfactory results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Part 13: Virtual Reality and Simulation

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective - To describe and validate the simulation of the basic features of GE Millennium MG gamma camera using the GATE Monte Carlo platform. Material and methods - Crystal size and thickness, parallel-hole collimation and a realistic energy acquisition window were simulated in the GATE platform. GATE results were compared to experimental data in the following imaging conditions: a point source of 99mTc at different positions during static imaging and tomographic acquisitions using two different energy windows. The accuracy between the events expected and detected by simulation was obtained with the Mann–Whitney–Wilcoxon test. Comparisons were made regarding the measurement of sensitivity and spatial resolution, static and tomographic. Simulated and experimental spatial resolutions for tomographic data were compared with the Kruskal–Wallis test to assess simulation accuracy for this parameter. Results - There was good agreement between simulated and experimental data. The number of decays expected when compared with the number of decays registered, showed small deviation (≤0.007%). The sensitivity comparisons between static acquisitions for different distances from source to collimator (1, 5, 10, 20, 30cm) with energy windows of 126–154 keV and 130–158 keV showed differences of 4.4%, 5.5%, 4.2%, 5.5%, 4.5% and 5.4%, 6.3%, 6.3%, 5.8%, 5.3%, respectively. For the tomographic acquisitions, the mean differences were 7.5% and 9.8% for the energy window 126–154 keV and 130–158 keV. Comparison of simulated and experimental spatial resolutions for tomographic data showed no statistically significant differences with 95% confidence interval. Conclusions - Adequate simulation of the system basic features using GATE Monte Carlo simulation platform was achieved and validated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The rising usage of distributed energy resources has been creating several problems in power systems operation. Virtual Power Players arise as a solution for the management of such resources. Additionally, approaching the main network as a series of subsystems gives birth to the concepts of smart grid and micro grid. Simulation, particularly based on multi-agent technology is suitable to model all these new and evolving concepts. MASGriP (Multi-Agent Smart Grid simulation Platform) is a system that was developed to allow deep studies of the mentioned concepts. This paper focuses on a laboratorial test bed which represents a house managed by a MASGriP player. This player is able to control a real installation, responding to requests sent by the system operators and reacting to observed events depending on the context.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The dynamism and ongoing changes that the electricity markets sector is constantly suffering, enhanced by the huge increase in competitiveness, create the need of using simulation platforms to support operators, regulators, and the involved players in understanding and dealing with this complex environment. This paper presents an enhanced electricity market simulator, based on multi-agent technology, which provides an advanced simulation framework for the study of real electricity markets operation, and the interactions between the involved players. MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) uses real data for the creation of realistic simulation scenarios, which allow the study of the impacts and implications that electricity markets transformations bring to different countries. Also, the development of an upper-ontology to support the communication between participating agents, provides the means for the integration of this simulator with other frameworks, such as MAN-REM (Multi-Agent Negotiation and Risk Management in Electricity Markets). A case study using the enhanced simulation platform that results from the integration of several systems and different tools is presented, with a scenario based on real data, simulating the MIBEL electricity market environment, and comparing the simulation performance with the real electricity market results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recent changes of paradigm in power systems opened the opportunity to the active participation of new players. The small and medium players gain new opportunities while participating in demand response programs. This paper explores the optimal resources scheduling in two distinct levels. First, the network operator facing large wind power variations makes use of real time pricing to induce consumers to meet wind power variations. Then, at the consumer level, each load is managed according to the consumer preferences. The two-level resources schedule has been implemented in a real-time simulation platform, which uses hardware for consumer’ loads control. The illustrative example includes a situation of large lack of wind power and focuses on a consumer with 18 loads.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The next generations of both biological engineering and computer engineering demand that control be exerted at the molecular level. Creating, characterizing and controlling synthetic biological systems may provide us with the ability to build cells that are capable of a plethora of activities, from computation to synthesizing nanostructures. To develop these systems, we must have a set of tools not only for synthesizing systems, but also designing and simulating them. The BioJADE project provides a comprehensive, extensible design and simulation platform for synthetic biology. BioJADE is a graphical design tool built in Java, utilizing a database back end, and supports a range of simulations using an XML communication protocol. BioJADE currently supports a library of over 100 parts with which it can compile designs into actual DNA, and then generate synthesis instructions to build the physical parts. The BioJADE project contributes several tools to Synthetic Biology. BioJADE in itself is a powerful tool for synthetic biology designers. Additionally, we developed and now make use of a centralized BioBricks repository, which enables the sharing of BioBrick components between researchers, and vastly reduces the barriers to entry for aspiring Synthetic Biologists.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Virtual platforms are of paramount importance for design space exploration and their usage in early software development and verification is crucial. In particular, enabling accurate and fast simulation is specially useful, but such features are usually conflicting and tradeoffs have to be made. In this paper we describe how we integrated TLM communication mechanisms into a state-of-the-art, cycle-accurate, MPSoC simulation platform. More specifically, we show how we adapted ArchC fast functional instruction set simulators to the MPARM platform in order to achieve both fast simulation speed and accuracy. Our implementation led to a much faster hybrid platform, reaching speedups of up to 2.9 and 2.1x on average with negligible impact on power estimation accuracy (average 3.26% and 2.25% of standard deviation). © 2011 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This thesis is focused on Smart Grid applications in medium voltage distribution networks. For the development of new applications it appears useful the availability of simulation tools able to model dynamic behavior of both the power system and the communication network. Such a co-simulation environment would allow the assessment of the feasibility of using a given network technology to support communication-based Smart Grid control schemes on an existing segment of the electrical grid and to determine the range of control schemes that different communications technologies can support. For this reason, is presented a co-simulation platform that has been built by linking the Electromagnetic Transients Program Simulator (EMTP v3.0) with a Telecommunication Network Simulator (OPNET-Riverbed v18.0). The simulator is used to design and analyze a coordinate use of Distributed Energy Resources (DERs) for the voltage/var control (VVC) in distribution network. This thesis is focused control structure based on the use of phase measurement units (PMUs). In order to limit the required reinforcements of the communication infrastructures currently adopted by Distribution Network Operators (DNOs), the study is focused on leader-less MAS schemes that do not assign special coordinating rules to specific agents. Leader-less MAS are expected to produce more uniform communication traffic than centralized approaches that include a moderator agent. Moreover, leader-less MAS are expected to be less affected by limitations and constraint of some communication links. The developed co-simulator has allowed the definition of specific countermeasures against the limitations of the communication network, with particular reference to the latency and loss and information, for both the case of wired and wireless communication networks. Moreover, the co-simulation platform has bee also coupled with a mobility simulator in order to study specific countermeasures against the negative effects on the medium voltage/current distribution network caused by the concurrent connection of electric vehicles.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The rapid development in the field of lighting and illumination allows low energy consumption and a rapid growth in the use, and development of solid-state sources. As the efficiency of these devices increases and their cost decreases there are predictions that they will become the dominant source for general illumination in the short term. The objective of this thesis is to study, through extensive simulations in realistic scenarios, the feasibility and exploitation of visible light communication (VLC) for vehicular ad hoc networks (VANETs) applications. A brief introduction will introduce the new scenario of smart cities in which visible light communication will become a fundamental enabling technology for the future communication systems. Specifically, this thesis focus on the acquisition of several, frequent, and small data packets from vehicles, exploited as sensors of the environment. The use of vehicles as sensors is a new paradigm to enable an efficient environment monitoring and an improved traffic management. In most cases, the sensed information must be collected at a remote control centre and one of the most challenging aspects is the uplink acquisition of data from vehicles. My thesis discusses the opportunity to take advantage of short range vehicle-to-vehicle (V2V) and vehicle-to-roadside (V2R) communications to offload the cellular networks. More specifically, it discusses the system design and assesses the obtainable cellular resource saving, by considering the impact of the percentage of vehicles equipped with short range communication devices, of the number of deployed road side units, and of the adopted routing protocol. When short range communications are concerned, WAVE/IEEE 802.11p is considered as standard for VANETs. Its use together with VLC will be considered in urban vehicular scenarios to let vehicles communicate without involving the cellular network. The study is conducted by simulation, considering both a simulation platform (SHINE, simulation platform for heterogeneous interworking networks) developed within the Wireless communication Laboratory (Wilab) of the University of Bologna and CNR, and network simulator (NS3). trying to realistically represent all the wireless network communication aspects. Specifically, simulation of vehicular system was performed and introduced in ns-3, creating a new module for the simulator. This module will help to study VLC applications in VANETs. Final observations would enhance and encourage potential research in the area and optimize performance of VLC systems applications in the future.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The NURISP project aims at developing the European NURESIM reference simulation platform [1] for nuclear reactor. A first version of NURESIM was delivered in 2008. 22 organizations from 14 European countries contribute to the further development of this platform. NURISP also includes a User’s Group (UG) whose members are not NURISP partners and come from the industrial nuclear sector or European and non-European R&D labs. Users can benefit from the use of the NURESIM platform, methods, results and modules and they provide concrete input and feedback on the use of these elements.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hardware/software (HW/SW) cosimulation integrates software simulation and hardware simulation simultaneously. Usually, HW/SW co-simulation platform is used to ease debugging and verification for very large-scale integration (VLSI) design. To accelerate the computation of the gesture recognition technique, an HW/SW implementation using field programmable gate array (FPGA) technology is presented in this paper. The major contributions of this work are: (1) a novel design of memory controller in the Verilog Hardware Description Language (Verilog HDL) to reduce memory consumption and load on the processor. (2) The testing part of the neural network algorithm is being hardwired to improve the speed and performance. The American Sign Language gesture recognition is chosen to verify the performance of the approach. Several experiments were carried out on four databases of the gestures (alphabet signs A to Z). (3) The major benefit of this design is that it takes only few milliseconds to recognize the hand gesture which makes it computationally more efficient.