953 resultados para Silvicultura clonal
Resumo:
Objetivou-se com o presente estudo avaliar a eficiência da técnica de miniestaquia na propagação vegetativa de progênies de meios-irmãos de angico-vermelho (Anadenanthera macrocarpa (Benth) Brenan) quanto à produção de brotações e sobrevivência das minicepas, enraizamento das miniestacas apicais e intermediárias tratadas com diferentes doses do AIB (0; 2.000; 4.000 e 6.000 mg L-1), assim como determinar a velocidade de enraizamento em casa de vegetação. As minicepas foram obtidas a partir de mudas produzidas via sementes de seis progênies de meios-irmãos de angico-vermelho. Com base nos resultados obtidos, as minicepas apresentaram produtividade de 1,2 a 3,7 miniestacas/minicepa/coleta e sobrevivência de 84% a 98% ao longo das seis coletas realizadas. As miniestacas apicais foram superiores em relação às intermediárias, com maior predisposição ao enraizamento, no entanto o AIB não teve efeito significativo sobre o enraizamento das progênies estudadas. Quanto à velocidade de enraizamento, os resultados indicaram variação entre as progênies.
Resumo:
Quercus pyrenaica es una especie rebrotadora de raíz intensa e históricamente aprovechada en monte bajo para la obtención de leñas, carbón y pastos. Debido al éxodo rural y a la aparición de nuevas fuentes energéticas, este aprovechamiento fue abandonado en la década de 1970. Desde entonces, las bajas producciones de madera y bellota y el puntisecado de los pies evidencian el generalizado estancamiento de estas masas. Uno de los mayores retos actuales de la selvicultura en el ámbito mediterráneo es encontrar usos alternativos para estos montes abandonados, siendo la conversión a monte alto una de las alternativas preferidas. Se han realizado resalveos de conversión, sin embrago, éstos se aplican sin un conocimiento integral de las causas de la degradación. En esta tesis doctoral, estudiamos un hipotético desequilibrio entre la parte radical y la parte aérea (R:S) de las cepas de rebollo como causa subyacente de su decaimiento. En una parcela experimental, aprovechada al menos desde el siglo XII, se realizaron análisis genéticos a priori para elucidar la estructura genética del rodal, y así estudiar la influencia del tamaño clonal en el funcionamiento de las cepas. Las cepas de mayor tamaño presentaron un menor crecimiento diametral de sus pies, así como mayores tasas de respiración radical, estimadas a partir de flujos internos de CO2 a través del xilema (FT) y de los flujos de CO2 del suelo. Estos resultados sugieren que el desequilibrio R:S aumenta con el tamaño clonal, dado que la eliminación periódica de órganos aéreos, al mismo tiempo que las raíces permanecen intactas, da lugar a un gran desarrollo del sistema radical que consume gran parte de los carbohidratos no estructurales (NSC) en respiración de mantenimiento, comprometiendo así el desarrollo de órganos aéreos. Se excavaron y pesaron dos cepas compuestas por cuatro y ocho pies, las cuales mostraron ratios R:S (0.5 y 1, respectivamente) superiores a los registrados en pies de origen sexual. Al igual que en otras especies rebrotadoras de raíz, se observaron altas concentraciones de NSC en las raíces (> 20% en primavera) y una gran proporción de albura en el sistema radical (52%) que alberga una notable reserva de NSC (87 kg en la cepa de mayor tamaño). En el sistema radical de dicha cepa, estimada mediante dataciones radiocarbónicas en 550 años de edad, se contaron 248 uniones radicales. La persistencia de sistemas radicales grandes, viejos, y altamente interconectados sugiere que la gran cantidad de recursos almacenados y consumidos en las raíces compensan un pobre desarrollo aéreo con una alta resiliencia vegetativa. Para un mejor entendimiento de los balances de carbono y del agotamiento de NSC en las cepas de rebollo, se midieron los flujos internos y externos de CO2 en troncos y los flujos de CO2 del suelo, y se estimó la respiración de órganos aéreos (RS) y subterráneos (RR). Estacionalmente, RS y RR reflejaron las dinámicas de flujo de savia y de crecimiento del tronco, y estuvieron determinadas principalmente por los flujos externos de CO2, dada la escasa contribución de FT a RS y RR (< 10% y < 2%, respectivamente). En una escala circadiana, la contribución de FT a RS aumentó hasta un 25% en momentos de alta transpiración. Las bajas concentraciones de CO2 en el xilema ([CO2] hasta un 0.11%) determinaron comparativamente unos bajos FT, probablemente causados por una limitada respiración del xilema y una baja resistencia a la difusión radial del CO2 impuestos por la sequía estival. Los pulsos de [CO2] observados tras las primeras lluvias de otoño apoyan esta idea. A lo largo del periodo vegetativo, el flujo medio de CO2 procedente del suelo (39 mol CO2 day-1) fue el mayor flujo respiratorio, tres y cuatro veces superior a RS (12 mol CO2 day-1) y RR (8-9 mol CO2 day-1), respectivamente. Ratios RR/RS menores que la unidad evidencian un importante peso de la respiración aérea como sumidero de carbono adicional. Finalmente, se ensayó el zanjado de raíces y el anillamiento de troncos como tratamientos selvícolas alternativos con el objetivo de aumentar las reservas de NSC en los troncos de las cepas. Los resultados preliminares desaconsejan el zanjado de raíces por el alto coste derivado posiblemente de la cicatrización de las heridas. El anillado de troncos imposibilitó el transporte de NSC a las raíces y aumentó la concentración de almidón por encima de la zona anillada, mientras que sistema radical se mantiene por los pies no anillados de la cepa. Son necesarias más mediciones y datos adicionales para comprobar el mantenimiento de esta respuesta positiva a largo plazo. Para concluir, destacamos la necesidad de estudios multidisciplinares que permitan una comprensión integral de la degradación de los rebollares ibéricos para poder aplicar a posteriori una gestión adecuada en estos montes bajos abandonados. ABSTRACT Quercus pyrenaica is a vigorous root-resprouting species intensively and historically coppiced for firewood, charcoal and woody pastures. Due to the rural exodus and the appearance of new energy sources, coppicing was abandoned towards 1970. Since then, tree overaging has resulted in stand stagnation displayed by slow stem growth, branch dieback, and scarce acorn production. The urgent need to find new alternative uses for abandoned coppices is recognized as one of the biggest challenges which currently faces Mediterranean silviculture; conversion into high forest by thinning is one of the preferred alternatives. For this aim, thinning has been broadly applied and seldom tested, although without a comprehensive understanding of the causes of stand stagnation. In this PhD study, we test the hypothesis of an imbalance between above- and below-ground organs, result of long term coppicing, as the underlying cause of Q. pyrenaica decay. In an experimental plot coppiced since at least the 12th century, genetic analyses were performed a priori to elucidate inconspicuous clonal structure of Q. pyrenaica to evaluate how clonal size affects the functioning of these multi-stemmed trees. Clonal size negatively affected diametric stem growth, whereas root respiration rates, measured by internal fluxes of CO2 through xylem (FT) and soil CO2 efflux, increased with clonal size. These results suggest root-to-shoot (R:S) imbalance intensifying with clonal size: periodic removal of aboveground organs whilst belowground organs remain undisturbed may have led to massive root systems which consume a great proportion of non-structural carbohydrates (NSC) for maintenance respiration, thus constraining aboveground performance. Furthermore, excavation of two multi-stemmed trees, composed by four and eight stems, revealed R:S ratios (0.5 and 1, respectively) greater than those reported for sexually regenerated trees. Moreover, as similarly observed in several root-resprouting species, NSC allocation to roots was favored ([NSC] > 20% in spring): a large proportion of sapwood maintained throughout the root system (52%) stored a remarkable NSC pool of 87 kg in the case of the largest clone. In this root system of the eight-stemmed tree, 248 root connections were counted and, by radiocarbon dating, its age was estimated to be 550-years-old. Persistence of massive, old and highly interconnected root systems suggests that enhanced belowground NSC storage and consumption reflects a trade-off between vegetative resilience and aboveground development. For a better understanding of tree carbon budget and the potential role of carbon starvation in Q. pyrenaica decay, internal and external stem CO2 fluxes and soil CO2 effluxes were monitored to evaluate respiratory costs above- and below-ground. On a seasonal scale, stem and root respiration (RS and RR) mirrored sap flow and stem growth dynamics. Respiration was determined to the greatest extent by external fluxes of CO2 to the atmosphere or soil, since FT accounted for a low proportion of RS and RR (< 10% and < 2%, respectively). On a diel scale, the contribution of FT to RS increased up to 25% at high transpiration rates. Comparatively low FT was determined by the low concentration of xylem CO2 registered ([CO2] as low as 0.11%), likely as a consequence of constrained xylem respiration and reduced resistance to CO2 radial diffusion imposed by summer drought. Xylem [CO2] pulses following first autumn rains support this idea. Averaged over the growing season, soil CO2 efflux was the greatest respiratory flux (39 mol CO2 day-1), three and four times greater than RS (12 mol CO2 day-1) and RR (8-9 mol CO2 day-1), respectively. Ratios of RR/RS below one evidence an additional and important weight of aboveground respiration as a tree carbon sink. Finally, root trenching and stem girdling were tested as complimentary treatments to thinning as a means to improve carbon reserves in stems of clonal trees. Preliminary results discouraged root trenching due to the high cost likely incurred for wound closure. Stem girdling successfully blocked NSC translocation downward, increasing starch concentrations above the girdled zone whilst the root system is fed by non-girdled stems within the clone. Further measurements and ancillary data are necessary to verify that this positive effect hold over time. To conclude, the need of multidisciplinary approaches for an integrative understanding on the functioning of abandoned Q pyrenaica coppices is highlighted for an appropriate management of these stands.
Resumo:
Araucaria angustifolia é uma espécie nativa potencial para a silvicultura brasileira. No entanto, uma série de desafios e limitações técnicas ainda persistem, dificultando sua expansão silvicultural, dentre os quais se destaca a falta de tecnologias de clonagem de materiais genéticos superiores, bem como sua avaliação em condições de campo. Assim, objetivou-se avaliar a potencialidade da utilização de mudas de araucária oriundas de estaquia e de sementes para produção madeireira, por meio da avaliação da sobrevivência e crescimento a campo. Clones provenientes de matrizes masculinas e femininas, de diferentes tipos de estacas e mudas de sementes foram plantadas em espaçamento 3 x 3 m. O experimento foi conduzido em delineamento inteiramente casualizado, com três tratamentos e parcelas de uma planta (one tree plot). Clones do sexo feminino e de estacas contendo o ápice apresentaram maior crescimento em diâmetro à altura do peito (6,4 cm) e altura total (3,6 m) aos 74 meses após o plantio, seguidas das de sementes e demais clones, com resultados similares. Conclui-se que a estaquia é uma técnica potencial de produção de mudas de araucária para fins madeireiros e é favorecida pela utilização de estacas proveniente de matrizes femininas e com ápice.
Resumo:
Decline in the frequency of potent mesenchymal stem cells (MSCs) has been implicated in ageing and degenerative diseases. Increasing the circulating stem cell population can lead to renewed recruitment of these potent cells at sites of damage. Therefore, identifying the ideal cells for ex vivo expansion will form a major pursuit of clinical applications. This study is a follow-up of previous work that demonstrated the occurrence of fast-growing multipotential cells from the bone marrow samples. To investigate the molecular processes involved in the existence of such varying populations, gene expression studies were performed between fast- and slow-growing clonal populations to identify potential genetic markers associated with stemness using the quantitative real-time polymerase chain reaction comprising a series of 84 genes related to stem cell pathways. A group of 10 genes were commonly overrepresented in the fast-growing stem cell clones. These included genes that encode proteins involved in the maintenance of embryonic and neural stem cell renewal (sex-determining region Y-box 2, notch homolog 1, and delta-like 3), proteins associated with chondrogenesis (aggrecan and collagen 2 A1), growth factors (bone morphogenetic protein 2 and insulin-like growth factor 1), an endodermal organogenesis protein (forkhead box a2), and proteins associated with cell-fate specification (fibroblast growth factor 2 and cell division cycle 2). Expression of diverse differentiation genes in MSC clones suggests that these commonly expressed genes may confer the maintenance of multipotentiality and self-renewal of MSCs.
Resumo:
Tissue engineering allows the design of functionally active cells within supportive bio-scaffolds to promote the development of new tissues such as cartilage and bone for the restoration of pathologically altered tissues. However, all bone tissue engineering applications are limited by a shortage of stem cells. The adult bone marrow stroma contains a subset of nonhematopoietic cells referred to as bone marrow mesenchymal stem cells (BMSCs). BMSCs are of interest because they are easily isolated from a small aspirate of bone marrow and readily generate single- cell-derived colonies. These cells have the capacity to undergo extensive replication in an undifferentiated state ex vivo. In addition, BMSCs have the potential to develop either in vitro or in vivo into distinct mesenchymal tissues, including bone, cartilage, fat, tendon, muscle, and marrow stroma. Thus, BMSCs are an attractive cell source for tissue engineering approaches. However, BMSCs are not homo- geneous and the quantity of stem cells decreases in the bone marrow in aged population. A sequential loss of lineage differentiation potential has been found in the mixed culture of bone marrow stromal cells due to a heterogenous popu- lation. Therefore, a number of studies have proposed that homogenous bone marrow stem cells can be generated from clonal culture of bone marrow cells and that BMSC clones have the greatest potential for the application of bone regeneration in vivo
Resumo:
Most salad vegetables are eaten fresh by consumers. However, raw vegetables may pose a risk of transmitting opportunistic bacteria to immunocompromised people, including cystic fibrosis (CF) patients. In particular, CF patients are vulnerable to chronic Pseudomonas aeruginosa lung infections and this organism is the primary cause of morbidity and mortality in this group. Clonal variants of P. aeruginosa have been identified as emerging threats to people afflicted with CF; however it has not yet been proven from where these clones originate or how they are transmitted. Due to the organisms‟ aquatic environmental niche, it was hypothesised that vegetables may be a source of these clones. To test this hypothesis, lettuce, tomatoes, mushrooms and bean sprout packages (n = 150) were analysed from a green grocer, supermarket and farmers‟ market within the Brisbane region, availability permitting. The internal and external surfaces of the vegetables were separately analysed for the presence of clonal strains of P. aeruginosa using washings and homogenisation techniques, respectively. This separation was in an attempt to establish which surface was contaminated, so that recommendations could be made to decrease or eliminate P. aeruginosa from these foods prior to consumption. Soil and water samples (n = 17) from local farms were also analysed for the presence of P. aeruginosa. Presumptive identification of isolates recovered from these environmental samples was made based on growth on Cetrimide agar at 42°C, presence of the cytochrome-oxidase enzyme and inability to ferment lactose. P. aeruginosa duplex real-time polymerase chain reaction assay (PAduplex) was performed on all bacterial isolates presumptively identified as P. aeruginosa. Enterobacterial repetitive intergenic consensus strain typing PCR (ERIC-PCR) was subsequently performed on confirmed bacterial isolates. Although 72 P. aeruginosa were isolated, none of these proved to be clonal strains. The significance of these findings is that vegetables may pose a risk of transmitting sporadic strains of P. aeruginosa to people afflicted with CF and possibly, other immunocompromised people.
Resumo:
Axillary shoot proliferation was obtained using explants of Eucalyptus grandis L. juvenile and mature stages on a defined medium. Murashige and Skoog medium (MS) supplemented with benzyladenine (BA), naphthalene acetic acid (NAA) and additional thiamine. Excised shoots were induced to root on a sequence of three media: (1) White's medium containing indoleacetic acid (IAA), NAA and indole butyric acid; (IBA), (2) half-strength MS medium with charcoal and (3) half-strength MS liquid medium. The two types of explants differed in rooting response, with juvenile-derived shoots giving 60% rooting and adult-derived ones only 35%. Thus, the factors limiting cloning of selected trees in vitro are determined to be those controlling rooting of shoots in E. grandis.
Resumo:
Clonal forestry is the approach used for deployment of Pinus elliottii x P. caribaea hybrids in Queensland, Australia. Clonal forestry relies on the ability to maintain juvenility of stock plants while selections are made in field tests, so that genetic gains are not eroded by the effects of stock plant maturation. Two parallel approaches are employed in Queensland to maintain juvenility of clonal material. Firstly, the ortet and several ramets of each clone are maintained as archive hedges <20-cm height for the duration of field tests. Secondly, shoots from archive hedges are stored in tissue culture at low temperature and low irradiance to slow growth and slow maturation. Once the best clones have been identified, production hedges are derived from both archive hedges and tissue culture shoots. About 6 million rooted cuttings are produced annually, representing almost the entire planting program of Pinus in subtropical Queensland.
Resumo:
In boreal forests, microorganisms have a pivotal role in nutrient and water supply of trees as well as in litter decomposition and nutrient cycling. This reinforces the link between above-ground and below-ground communities in the context of sustainable productivity of forest ecosystems. In northern boreal forests, the diversity of microbes associated with the trees is high compared to the number of distinct tree species. In this thesis, the aim was to study whether conspecific tree individuals harbour different soil microbes and whether the growth of the trees and the community structure of the associated microbes are connected. The study was performed in a clonal field trial of Norway spruce, which was established in a randomized block design in a clear-cut area. Since out-planting in 1994, the spruce clones showed two-fold growth differences. The fast-growing spruce clones were associated with a more diverse community of ectomycorrhizal fungi than the slow-growing spruce clones. These growth performance groups also differed with respect to other aspects of the associated soil microorganisms: the species composition of ectomycorrhizal fungi, in the amount of extraradical fungal mycelium, in the structure of bacterial community associated with the mycelium, and in the structure of microbial community in the organic layer. The communities of fungi colonizing needle litter of the spruce clones in the field did not differ and the loss of litter mass after two-years decomposition was equal. In vitro, needles of the slow-growing spruce clones were colonized by a more diverse community of endophytic fungi that were shown to be significant needle decomposers. This study showed a relationship between the growth of Norway spruce clones and the community structure of the associated soil microbes. Spatial heterogeneity in soil microbial community was connected with intraspecific variation of trees. The latter may therefore influence soil biodiversity in monospecific forests.
Resumo:
Phylogenetic group D extraintestinal pathogenic Escherichia coli (ExPEC), including O15:K52:H1 and clonal group A, have spread globally and become fluoroquinolone-resistant. Here we investigated the role of canine feces as a reservoir of these (and other) human-associated ExPEC and their potential as canine pathogens. We characterized and compared fluoroquinolone-resistant E. coli isolates originally identified as phylogenetic group D from either the feces of hospitalized dogs (n = 67; 14 dogs) or extraintestinal infections (n = 53; 33 dogs). Isolates underwent phylogenetic grouping, random amplified polymorphic DNA (RAPD) analysis, virulence genotyping, resistance genotyping, human-associated ExPEC O-typing, and multi-locus sequence typing. Five of seven human-associated sequence types (STs) exhibited ExPEC-associated O-types, and appeared in separate RAPD clusters. The largest subgroup (16 fecal, 26 clinical isolates) were ST354 (phylogroup F) isolates. ST420 (phylogroup B2); O1-ST38, O15:K52:H1-ST393, and O15:K1-ST130 (phylogroup D); and O7-ST457, and O1-ST648 (phylogroup F) were also identified. Three ST-specific RAPD sub-clusters (ST354, ST393, and ST457) contained closely related isolates from both fecal or clinical sources. Genes encoding CTX-M and AmpC β-lactamases were identified in isolates from five STs. Major human-associated fluoroquinolone-resistant ± extended-spectrum cephalosporin-resistant ExPEC of public health importance may be carried in dog feces and cause extraintestinal infections in some dogs.
Resumo:
Background: The micropropagation protocol for Phyllanthus amarus, an important medicinal herb used widely for the treatment of hepatitis in ethnomedicinal systems, was standardized with shoot tip and single node explants. Materials and Methods: The micropropagation was carried out for the hyperproducing ecotype (phyllanthin content 463.828 ppm; hypophyllanthin content: 75.469 ppm) collected from Aanaikatti, Coimbatore, and grown in mist chamber, CPMB, TNAU. For micropropagation studies, the leaves were trimmed off and the shoot tips (6 mm long) and nodal segments (single node) were used for initiation. Results: Shoot tips and single node explants gave a maximum of 6.00 and 7.00 multiple shoots per explant with Benzyl Amino Purine (BAP) (1.0mg/L mg/L). Upon subculturing, a shoot length of around 7 cm with an average of eight internodes per shoot was observed after 20 days in the elongation medium supplemented with BAP (0.2 mg/Lmg/L) and Indole Acetic Acid (IAA) (2.0 mg/L). Seven to ten adventitious roots developed when the elongated microshoots were cultured in half strength MS medium with Indole Butyric Acid (IBA) (2.0 mg/Lmg/L) and NAA (1.0 mg/L mg/L) in 15-20 days after transfer. The rooted shoots acclimatized successfully to field conditions. Conclusion: A method for successful micropropagation of the valuable medicinal plant was established which will provide a better source for continuous supply of plants for manufacturing drugs.
Resumo:
Background: Diseases from Staphylococcus aureus are a major problem in Indian hospitals and recent studies point to infiltration of community associated methicillin resistant S. aureus (CA-MRSA) into hospitals. Although CA-MRSA are genetically different from nosocomial MRSA, the distinction between the two groups is blurring as CA-MRSA are showing multidrug resistance and are endemic in many hospitals. Our survey of samples collected from Indian hospitals between 2004 and 2006 had shown mainly hospital associated methicillin resistant Staphylococcus aureus (HA-MRSA) carrying staphylococcal cassette chromosome mec (SCCmec) type III and IIIA. But S. aureus isolates collected from 2007 onwards from community and hospital settings in India have shown SCCmec type IV and V cassettes while several variations of type IV SCCmec cassettes from IVa to IVj have been found in other parts of the world. In the present study, we have collected nasal swabs from rural and urban healthy carriers and pus, blood etc from in patients from hospitals to study the distribution of SCCmec elements and sequence types (STs) in the community and hospital environment. We performed molecular characterization of all the isolates to determine their lineage and microarray of select isolates from each sequence type to analyze their toxins, virulence and immune-evasion factors. Results: Molecular analyses of 68 S. aureus isolates from in and around Bengaluru and three other Indian cities have been carried out. The chosen isolates fall into fifteen STs with all major clonal complexes (CC) present along with some minor ones. The dominant MRSA clones are ST22 and ST772 among healthy carriers and patients. We are reporting three novel clones, two methicillin sensitive S. aureus (MSSA) isolates belonging to ST291 (related to ST398 which is live stock associated), and two MRSA clones, ST1208 (CC8), and ST672 as emerging clones in this study for the first time. Sixty nine percent of isolates carry Panton-Valentine Leucocidin genes (PVL) along with many other toxins. There is more diversity of STs among methicillin sensitive S. aureus than resistant ones. Microarray analysis of isolates belonging to different STs gives an insight into major toxins, virulence factors, adhesion and immune evasion factors present among the isolates in various parts of India. Conclusions: S. aureus isolates reported in this study belong to a highly diverse group of STs and CC and we are reporting several new STs which have not been reported earlier along with factors influencing virulence and host pathogen interactions.