978 resultados para Silica-modified electrodes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanostructured films comprising a 3-n-propylpyridiniunn silsesquioxane polymer (designated as SiPy(+)Cl(-)) and copper (II) tetrasulfophthalocyanine (CuTsPc) were produced using the Layer-by-Layer technique (LbL). To our knowledge this is the first report on the use of silsesquioxane derivative polymers as building blocks for nanostructured thin films fabrication. Deposition of the multilayers were monitored by UV-Vis spectroscopy revealing the linear increment in the absorbance of the Q-band from CuTsPc at 617 nm with the number of SiPy(+)Cl(-)/CuTsPc or CuTsPc/SiPy(+)Cl(-) bilayers. FTIR analyses showed that specific interactions between SiPy+Cl- and CuTsPc occurred between SO(3)(-) groups of tetrasulfophthalocyanine and the pyridinium groups of the polycation. Morphological studies were carried out using the AFM technique, which showed that the roughness and thickness of the films increase with the number of bilayers. The films displayed electroactivity and were employed to detection of dopamine (DA) and ascorbic acid (AA) using cyclic voltammetry, at concentrations ranging from 1.96 x 10(-4) to 1.31 x 10(-3) molL(-1). The number and the sequence of bilayers deposition influenced the electrochemical response in presence of DA and AA. Using differential pulse technique, films comprising SiPy(+)/CuTsPc were able to distinguish between DA and ascorbic acid (AA), with a potential difference of approximately with 500 mV, in the concentration range of 9.0 x 10(-5) to 2.0 x 10(-4) molL(-1), in pH 3.0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ordered mesoporous silica with cubic structure, type FDU-1, was synthesized under strong acid media using B-50-6600 poly(ethylene oxide)-poly(butilene oxide)-poly(ethylene oxide) triblock copolymer (EO(39)BO(47)EO(39)) and tetraethyl orthosilicate (TEOS). Humic acid (HA) was modified to the synthesis process at a concentration of 1.5 mmol per gram of SiO(2). Thermogravimetry, small angle X-ray diffraction, nitrogen adsorption and high resolution transmission electron microscopy were used to characterize the samples. The pristine FDU-1 and FDU-1 with incorporated 1.5 mmol of HA were tested for adsorption of Pb(2+), Cu(2+) and Cd(2+) in aqueous solution. Incorporation of humic acid into the FDU-1 silica afforded an adsorbent with strong affinity for Cd(2+), Cu(2+) and Pb(2+) from single ion solutions. Adsorption of Cu(2+) was significantly enhanced after incorporation of humic acid, a fact that can be explained by the formation of complexes with carboxylic and phenolic groups at low concentrations of the metal cation. The results demonstrated the potential applicability of FDU-1 with incorporated HA in the removal of low concentrations of heavy metal cations from aqueous solution, such as wastewaters, after usual precipitation of metal hydroxides in alkaline medium and proper pH conditioning in the range between 6 and 7. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phytase (myo-inositol hexaphosphate phosphohydrolase) and phytic acid (myo-inositol hexaphosphate) play an important environmental role, in addition to being a health issue in food industry. Phytic acid is antinutritional due to its ability to chelate metal ions and may also react with proteins decreasing their bioavailability. In this work, we produced biosensors with phytase immobilized in Layer-by-Layer (LbL) films, which could detect phytic acid with a detection limit of 0.19 mmol L-1, which is sufficient to detect phytic acid in seeds of grains and vegetables. The biosensosrs consisted of LbL films containing up to eight bilayers of phytase alternated with poly(allylamine) hydrochloride (PAH) deposited onto an indium-tin oxide (ITO) substrate modified with Prussian Blue. Amperometric detection was conducted in an acetate buffer solution (at pH 5.5) at room temperature, with the biosensor response attributed to the formation of phosphate ions. In subsidiary experiments with the currents measured at 0.0 V (vs. SCE), we demonstrated the absence of effects from some interferents, pointing to a good selectivity of the biosensor. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work describes the synthesis of platinum nanoparticles followed by their electrophoretic deposition onto transparent fluorine-doped tin oxide electrodes. The nano-Pt-modified electrodes were characterized by voltammetric studies in acidic solutions showing a great electrocatalytic behavior towards H(+) reduction being very interesting for fuel cell applications. Morphological characterization was performed by atomic force microscopy on different modified electrodes showing a very rough surface which can be tuned by means of time of deposition. Also, nickel hydroxide thin films were galvanostatically grown onto these electrodes showing an interesting electrochemical behavior as sharper peaks, indicating a faster ionic exchange from the electrolyte to the film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper hexacyanoferrate nanoparticles of about 30 nm in size have been prepared by the sonochemical irradiation of a mixture of aqueous potassium ferricyanide and copper chloride solutions. The nanoparticles were immobilized onto fluorine doped tin oxide (FTO) electrodes by using the electrostatic deposition layer-by-layer technique (LbL), obtaining electroactive films with electrocatalytic properties towards H2O2 reduction, providing higher currents than those observed for electrodeposited bulk material, even in electrolytes containing NH4+, Na+ and K+. The nanoparticles assembly was used as mediator in a glucose biosensor by immobilizing glucose oxidase enzyme by both, cross-linking and LbL. techniques. Sensitivities obtained were dependent on the immobilization method ranging from 1.23 mu A mmol(-1) L cm(-2) for crosslinking to 0.47 mu A mmol(-1) L cm(-2) for LbL; these values being of the same order than those obtained with electrodes where the amount of enzyme used is much higher. Moreover, the linear concentration range where the biosensors can operate was 10 times higher for electrodes prepared with the LbL immobilization method than with the conventional crosslinking one. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A general view of the electroanalytical applications of metal-salen complexes is discussed in this review. The family of Schiff bases derived from ethylenediamine and ortho-phenolic aldehydes (N,N'-ethylenebis(salicylideneiminato) - salen) and their complexes of various transition metals, such as Al, Ce, Co, Cu, Cr, Fe, Ga, Hg, Mn, Mo, Ni, and V have been used in many fields of chemical research for a wide range of applications such as catalysts for the oxygenation of organic molecules, epoxidation of alkenes, oxidation of hydrocarbons and many other catalyzed reactions; as electrocatalyst for novel sensors development; and mimicking the catalytic functions of enzymes. A brief history of the synthesis and reactivity of metal-salen complexes will be presented. The potentialities and possibilities of metal-Salen complexes modified electrodes in the development of electrochemical sensors as well as other types of sensors, their construction and methods of fabrication, and the potential application of these modified electrodes will be illustrated and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phytase (myo-inositol hexaphosphate phosphohydrolase) and phytic acid (myo-inositol hexaphosphate) play an important environmental role, in addition to being a health issue in food industry. Phytic acid is antinutritional due to its ability to chelate metal ions and may also react with proteins decreasing their bioavailability. In this work, we produced biosensors with phytase immobilized in Layer-by-Layer (LbL) films, which could detect phytic acid with a detection limit of 0.19 mmol L-1, which is sufficient to detect phytic acid in seeds of grains and vegetables. The biosensosrs consisted of LbL films containing up to eight bilayers of phytase alternated with poly(allylamine) hydrochloride (PAH) deposited onto an indium-tin oxide (ITO) substrate modified with Prussian Blue. Amperometric detection was conducted in an acetate buffer solution (at pH 5.5) at room temperature, with the biosensor response attributed to the formation of phosphate ions. In subsidiary experiments with the currents measured at 0.0 V (vs. SCE), we demonstrated the absence of effects from some interferents, pointing to a good selectivity of the biosensor. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method for the attachment of 2-mercaptothiazoline (MTZ) to modified silica gel has been developed. In the first step, a new silylant agent was synthesized, named SiMTZ, by the reaction between MTZ molecule and chloropropyltrimethoxysilane (SiCl). SiMTZ and tetraethylortosilicate were co-condensed in the presence of n-dodecylamine, a neutral surfactant template, to produce a modified ordered hexagonal mesoporous silica named HMTZ. The modified material contained 0.89 +/- 0.03 mmol of 2-mercaptothiazoline per gram of silica. FT-IR, FT-Raman, Si-29- and C-13-NMR spectra were in agreement with the proposed structure of the modified mesoporous silica in the solid state. HMTZ material has been used for divalent mercury adsorption from aqueous solution at 298 I K. The series of adsorption isotherms were adjusted to a modified Langmuir equation. The maximum number of moles of mercury adsorbed gave 2.34 +/- 0.09 mmol/g of material. The same interaction was followed by calorimetric titration on an isoperibol calorimeter. The HMTZ presented a high capacity for the removal of the contaminant mercury from water. The Delta H and Delta G values for the interaction were determined to be -56.34 +/- 1.07 and -2.14 +/- 0.11 kJ mol(-1). This interaction process was accompanied by a decrease of entropy value (- 182 J mol(-1) K-1). Thus, the interaction between mercury and HMTZ resulted in a spontaneous thermodynamic system with a high favorable exothermic enthalpic effect. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silica gel chemically modified with 2-aminotiazole groups (SiAT), was used for preconcentration of cupper, zinc, nickel and iron from gasoline, normally used as a engine fuel. Surface characteristics and surface area of the silica gel were obtained before and after chemical modification using FT-IR, Kjeldhal and surface area analysis (B.E.T.). The retention and recovery of the analyte elements were studied by applying batch and column techniques. The experimental parameters, such as shaking time in batch technique, flow rate and concentration of the eluent (HCl-0.25-2.00 mol 1(-1)) and the amount of silica, on retention and elution, have been investigated. Detection limits of the method for cupper, iron, nickel and zinc are 0.8, 3, 2 and 0.1 mug 1(-1), respectively. The sorption-desorption of the studied metal ions made possible the development of a preconcentration method for metal ions at trace level in gasoline using flame AAS for their quantification. (C) 2004 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the synthesis and characterization of 2-aminothiazole modified silica gel (SiAT) and the studies of adsorption and pre-concentration (in batch and using a flow-injection system coupled with optical emission spectrometer) of Cd(II), Cu(II) and Ni(II) in aqueous medium. The adsorption capacity for each metal ions in mmolg(-1) was: Cu(II) = 1.18, Ni(II) = 1.15 and Cd(II) = 1.10. The results obtained in the flow experiments showed about 100% of recovering of the metal ions adsorbed in a mini-column packed with 100 mg of SiAT, using 100 mu L of 2.0 mol L-1 HCl solution as eluent. The quantitative sorption-desorption of the metal ions made possible the application of a flow-injection system in the pre-concentration and quantification by ICP-OES of metal ions at trace level in natural water samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the fast growth of cancer research, new analytical methods are needed to measure anticancer drugs. This is usually accomplished by using sophisticated analytical instruments. Biosensors are attractive candidates for measuring anticancer drugs, but currently few biosensors can achieve this goal. In particular, it is challenging to have a general method to monitor various types of anticancer drugs with different structures. In this work, a biosensor was developed to detect anticancer drugs by modifying carbon paste electrodes with glutathione-s-transferase (GST) enzymes. GST is widely studied in the metabolism of xenobiotics and is a major contributing factor in resistance to anticancer drugs. The measurement of anticancer drugs is based on competition between 1-chloro-2,4-dinitrobenzene (CDNB) and the drugs for the GST enzyme in the electrochemical potential at 0.1 V vs. Ag/AgCl by square wave voltammetry (SWV) or using a colorimetric method. The sensor shows a detection limit of 8.8 mu M cisplatin and exhibits relatively long life time in daily measurements. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecularly imprinted polymers (MIP's) have been applied in several areas of analytical chemistry, including the modification of electrodes. The main purpose of such modification is improving selectivity; however, a gain in sensitivity was also observed in many cases. The most frequent approaches for these modifications are the electrodeposition of polymer films and sol gel deposits, spin and drop coating and self-assembling of films on metal nanoparticles. The preparation of bulk (body) modified composites as carbon pastes and polymer agglutinated graphite have also been investigated. In all cases several analytes including pharmaceuticals, pesticides, and inorganic species, as well as molecules with biological relevance have been successfully used as templates and analyzed with such devices in electroanalytical procedures. Herein, 65 references are presented concerning the general characteristics and some details related to the preparation of MIP's including a description of electrodes modified with MIP's by different approaches. The results using voltammetric and amperometric detection are described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The direct electron transfer between indium–tin oxide electrodes (ITO) and cytochrome c encapsulated in different sol–gel silica networks was studied. Cyt c@silica modified electrodes were synthesized by a two-step encapsulation method mixing a phosphate buffer solution with dissolved cytochrome c and a silica sol prepared by the alcohol-free sol–gel route. These modified electrodes were characterized by cyclic voltammetry, UV–vis spectroscopy, and in situ UV–vis spectroelectrochemistry. The electrochemical response of encapsulated protein is influenced by the terminal groups of the silica pores. Cyt c does not present electrochemical response in conventional silica (hydroxyl terminated) or phenyl terminated silica. Direct electron transfer to encapsulated cytochrome c and ITO electrodes only takes place when the protein is encapsulated in methyl modified silica networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, the electrochemical properties of single-walled carbon nanotube buckypapers (BPs) were examined in terms of carbon nanotubes nature and preparation conditions. The performance of the different free-standing single wall carbon nanotube sheets was evaluated via cyclic voltammetry of several redox probes in aqueous electrolyte. Significant differences are observed in the electron transfer kinetics of the buckypaper-modified electrodes for both the outer- and inner-sphere redox systems. These differences can be ascribed to the nature of the carbon nanotubes (nanotube diameter, chirality and aspect ratio), surface oxidation degree and type of functionalities. In the case of dopamine, ferrocene/ferrocenium, and quinone/hydroquinone redox systems the voltammetric response should be thought as a complex contribution of different tips and sidewall domains which act as mediators for the electron transfer between the adsorbate species and the molecules in solution. In the other redox systems only nanotube ends are active sites for the electron transfer. It is also interesting to point out that a higher electroactive surface area not always lead to an improvement in the electron transfer rate of various redox systems. In addition, the current densities produced by the redox reactions studied here are high enough to ensure a proper electrochemical signal, which enables the use of BPs in sensing devices.