3 resultados para Signaltransduction


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Charakterisierung synapsenassoziierter Proteine des Haushuhns(Gallus gallus domesticus) Die Familie der synapsenassoziierten Proteine (SAP) umfaßt bei Säugern vier Proteine: SAP90 (=PSD-95), SAP97, SAP102 (=PSD-93) und Chapsyn110. Die Proteine enthalten charakteristischerweise drei PDZ-Domänen, eine SH3-Domäne und eine GK-Domäne über die sie mit anderen Proteinen interagieren können. SAP können so Verbindungen zwischen Neurotransmitterrezeptoren und Signaltransduktionsmolekülen sowie dem Zytoskelett herstellen.In dieser Arbeit wurden die synapsenassoziierten Proteine des Huhns charakterisiert. Die cDNAs von SAP90, SAP97 und Chapsyn110 wurden sequenziert. Die cDNA von SAP102 wurde teilweise sequenziert. Die Analyse genomischer DNA durch PCR ergab, daß die SAP90- und SAP97-mRNA von einem Gen transkribiert werden. Die mRNA-Verteilung von SAP90, SAP97 und Chapsyn110 im Gehirn einen Tag alter Küken wurde mit in situ Hybridisierung untersucht. Die Verteilung der SAP90-mRNA und von NMDA-Rezeptoren im Gehirn des Huhns ist sehr ähnlich. Weiterhin wurde bei Küken untersucht, inwieweit SAP bei der Prägung eine Rolle spielen. Der relative mRNA-Gehalt von SAP90, SAP97 und Chapsyn110 wurde 30 Minuten, 5 Stunden und 10 Stunden nach einer akustische Prägung der Küken gemessen. Fünf Stunden nach akustischer Prägung war der Gehalt der SAP90-mRNA, im anterioren lateralen Hyperstriatum ventrale um 13% erhöht. Der mRNA-Gehalt in anderen Regionen und der anderen SAP-Gene war unverändert.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Tumoren und Onkogen-transformierten Zellen finden sich häufig Defizienzen in der Expression von Komponenten der MHC Klasse I-Antigenprozessierung, die mit einer verminderten MHC Klasse I-Oberflächenexpression und einer reduzierten Sensitivität der Zellen gegenüber einer ZTL-vermittelten Lyse gekoppelt sein können. Da in den meisten Fällen die reduzierten Expressionsmuster über Zytokine revertiert werden können, werden verschiedene Regulationsmechanismen als Ursache für die Defizienzen postuliert. Auch in Zellen, die den „human epidermal growth factor receptor 2“ (HER-2/neu) überexprimieren, wurden derartige „Immune escape“-Mechanismen identifiziert. Aufgrund der Amplifikation und/oder Überexpression dieses Onkogens in Tumoren, die mit einer schnellen Progression der Erkrankung und einer schlechten Heilungsprognose assoziiert ist, wurden zahlreiche Therapien entwickelt, die auf einer Mobilisierung des Immunsystems gegenüber HER-2/neu oder dessen Blockade durch spezifische Antikörper abzielen. Die bisher jedoch nur unzureichenden Erfolge dieser Therapien könnten ihre Ursache in einer verminderten Immunogenität der HER-2/neu+-Zellen aufgrund von Defizienzen in der MHC Klasse I-Antigenprozessierung haben, weshalb die Untersuchung der molekularen Ursachen dieser Suppression für die Therapie von HER-2/neu+-Tumoren von besonderer Bedeutung ist. In dieser Arbeit wurde anhand eines in vitro-Systems ein HER-2/neu-vermittelter „Immune escape“-Phänotyp charakterisiert und die zugrunde liegenden molekularen Mechanismen untersucht. Hierzu wurden murine, HER-2/neu--NIH3T3-Zellen mit HER-2/neu-transfizierten NIH3T3-Zellen verglichen. Die Untersuchung zeigte, dass die Oberflächenexpression von MHC Klasse I-Antigenen bei einer HER-2/neu-Überexpression vermindert ist. Dies ist assoziiert mit reduzierten Expressionen von LMP2, LMP10, PA28a, PA28b, ERAAP, TAP1, TAP2, und Tapasin, einem blockiertem TAP-Transport und einer fehlenden Sensitivität gegenüber einer ZTL-vermittelten Lyse. Da die analysierten Defekte durch eine Stimulation mit IFN‑g wieder revertiert werden können, wird eine transkriptionelle oder translationelle Regulation der betroffenen Gene durch HER-2/neu postuliert. Aufgrund dieser Ergebnisse ist eine T-Zell-vermittelte Therapie von HER-2/neu+-Tumoren als kritisch anzusehen. Die Untersuchung der Promotoren von TAP1/LMP2, TAP2 und Tapasin ergab geringere und durch IFN‑g-induzierbare Promotoraktivitäten in den HER-2/neu+-Zellen im Vergleich zu den HER-2/neu—-Zellen. Mittels Mutagenese-PCR und Gelretardationsanalysen konnte die Bindung eines Komplexes an zwei E2F- und einer P300-Bindungsstelle im Tapasin-Promotor identifiziert werden, die für die HER-2/neu-vermittelte Hemmung der Tapasin-Promotor­aktivität essentiell ist. Eine Inaktivierung der E2F- und P300-Motve in den TAP1/LMP2- und TAP2-Promotoren hatte dagegen keinen Einfluss auf die HER-2/neu-vermittelte Blockade der Promotoraktivität. Ein Vergleich der Promotoraktivitäten der HER-2/neu+- mit Ras-transformierten Zellen ergab, dass die TAP1/LMP2- und TAP2-Promotoren in beiden Zellen supprimiert werden, während der Tapasin-Promotor bei Ras-Transformation nicht beein­trächtigt ist. Der Einsatz von Inhibitoren zeigte, dass die Suppression des Tapasin-Promotors vermutlich über die PLC-g-PKC-Kaskade erfolgt. Dagegen konnte mit Inhibitoren gegen MAPK und PI3Kinase kein vergleichbarer Effekt erzielt werden. Aufgrund dieser Daten wird postuliert, dass HER-2/neu über die Signalkaskade PLC-g–PKC–E2F/P300 die Tapasin-Promotoraktivität supprimiert, wohingegen noch bisher unbekannte Signalkaskaden von HER-2/neu und Ras zu einer Hemmung der TAP1/LMP2- und TAP2-Promotoraktivität führen. Da die Komplexbildung von E2F und P300 auch im Zellzyklus eine Rolle spielt, wird eine negative Korrelation zwischen Zell-Proliferation und MHC Klasse I-Antigenpräsentation postuliert, die Gegenstand künftiger Studien sein wird.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bakterien besitzen membranintegrierte Sensoren für die Reaktion auf verändernde Umweltbedingungen.rnViele der Sensoren sind Zweikomponenten-Systeme bestehend aus einer Sensorhistidinkinase und einem Responseregulator der die zellulare Antwort auslöst. DcuS, der C4-Dicarboxylat-Sensor von DcuS ist eine membranintegrierte Histidin-Kinase. DcuS ist ein Multidomänen-Protein mit einer sensorischen periplasmatischen PASP (Per-Arnt-Sim) Domäne, zwei Transmembranhelices, eine cytoplasmatische PASC-Domäne und eine C-terminale Kinase-Domäne. PAS-Domänen sind ubiquitäre Signalmodule die in allen Reichen des Lebens zu finden sind. PAS-Domänen detektieren eine Vielfalt von Reizen wie Licht, Sauerstoff, Redoxpotential und verschiedene kleine Moleküle so wie die Modulation von Protein-Protein Interaktionen. PAS-Domänen sind strukturell homolog und besitzen eine charakteristische α/β-Faltung. Eine große Anzahl der sensorischen PAS-Domänen wurden identifiziert, aber viele der PAS-Domänen besitzen keinen apparenten Cofaktor und die Funktion ist unbekannt.rnEine Kombination aus gerichteter und ungerichteter Mutagenese, Protein-Protein-Interaktionsstudien und Festkörper-NMR (ssNMR) Experimente mit strukturellem Modelling wurde zur Untersuchung der Struktur und Funktion der cytoplasmatischen PAS-Domäne des membranintegrierten Sensors DcuS verwendet. Die Experimente zeigen, dass PASC eine wichtige Rolle in die Signaltransduktion von PASP zur C-terminalen Histidin-Kinase von DcuS spielt.rn