999 resultados para Signal Validation
Resumo:
In this paper we establish a foundation for understanding the instrumentation needs of complex dynamic systems if ecological interface design (EID)-based interfaces are to be robust in the face of instrumentation failures. EID-based interfaces often include configural displays which reveal the higher-order properties of complex systems. However, concerns have been expressed that such displays might be misleading when instrumentation is unreliable or unavailable. Rasmussen's abstraction hierarchy (AH) formalism can be extended to include representations of sensors near the functions or properties about which they provide information, resulting in what we call a sensor-annotated abstraction hierarchy. Sensor-annotated AHs help the analyst determine the impact of different instrumentation engineering policies on higher-order system information by showing how the data provided from individual sensors propagates within and across levels of abstraction in the AH. The use of sensor-annotated AHs with a configural display is illustrated with a simple water reservoir example. We argue that if EID is to be effectively employed in the design of interfaces for complex systems, then the information needs of the human operator need to be considered at the earliest stages of system development while instrumentation requirements are being formulated. In this way, Rasmussen's AH promotes a formative approach to instrumentation engineering. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Field trial measurements are used to validate the level crossing rate formula derived in an exact manner recently for the Nakagami-m signal. The formula reveals an excellent fit to measurements in situations other than those for which the Rice model is more appropriate.
Resumo:
The Virgo detector is a kilometer-scale interferometer for gravitational wave detection located near Pisa (Italy). About 13 months of data were accumulated during four science runs (VSR1, VSR2, VSR3 and VSR4) between May 2007 and September 2011, with increasing sensitivity. In this paper, the method used to reconstruct, in the range 10 Hz-10 kHz, the gravitational wave strain time series h(t) from the detector signals is described. The standard consistency checks of the reconstruction are discussed and used to estimate the systematic uncertainties of the h(t) signal as a function of frequency. Finally, an independent setup, the photon calibrator, is described and used to validate the reconstructed h(t) signal and the associated uncertainties. The systematic uncertainties of the h(t) time series are estimated to be 8% in amplitude. The uncertainty of the phase of h(t) is 50 mrad at 10 Hz with a frequency dependence following a delay of 8 mu s at high frequency. A bias lower than 4 mu s and depending on the sky direction of the GW is also present.
Resumo:
In patients diagnosed with pharmaco-resistant epilepsy, cerebral areas responsible for seizure generation can be defined by performing implantation of intracranial electrodes. The identification of the epileptogenic zone (EZ) is based on visual inspection of the intracranial electroencephalogram (IEEG) performed by highly qualified neurophysiologists. New computer-based quantitative EEG analyses have been developed in collaboration with the signal analysis community to expedite EZ detection. The aim of the present report is to compare different signal analysis approaches developed in four different European laboratories working in close collaboration with four European Epilepsy Centers. Computer-based signal analysis methods were retrospectively applied to IEEG recordings performed in four patients undergoing pre-surgical exploration of pharmaco-resistant epilepsy. The four methods elaborated by the different teams to identify the EZ are based either on frequency analysis, on nonlinear signal analysis, on connectivity measures or on statistical parametric mapping of epileptogenicity indices. All methods converge on the identification of EZ in patients that present with fast activity at seizure onset. When traditional visual inspection was not successful in detecting EZ on IEEG, the different signal analysis methods produced highly discordant results. Quantitative analysis of IEEG recordings complement clinical evaluation by contributing to the study of epileptogenic networks during seizures. We demonstrate that the degree of sensitivity of different computer-based methods to detect the EZ in respect to visual EEG inspection depends on the specific seizure pattern.
Resumo:
Objective: We carry out a systematic assessment on a suite of kernel-based learning machines while coping with the task of epilepsy diagnosis through automatic electroencephalogram (EEG) signal classification. Methods and materials: The kernel machines investigated include the standard support vector machine (SVM), the least squares SVM, the Lagrangian SVM, the smooth SVM, the proximal SVM, and the relevance vector machine. An extensive series of experiments was conducted on publicly available data, whose clinical EEG recordings were obtained from five normal subjects and five epileptic patients. The performance levels delivered by the different kernel machines are contrasted in terms of the criteria of predictive accuracy, sensitivity to the kernel function/parameter value, and sensitivity to the type of features extracted from the signal. For this purpose, 26 values for the kernel parameter (radius) of two well-known kernel functions (namely. Gaussian and exponential radial basis functions) were considered as well as 21 types of features extracted from the EEG signal, including statistical values derived from the discrete wavelet transform, Lyapunov exponents, and combinations thereof. Results: We first quantitatively assess the impact of the choice of the wavelet basis on the quality of the features extracted. Four wavelet basis functions were considered in this study. Then, we provide the average accuracy (i.e., cross-validation error) values delivered by 252 kernel machine configurations; in particular, 40%/35% of the best-calibrated models of the standard and least squares SVMs reached 100% accuracy rate for the two kernel functions considered. Moreover, we show the sensitivity profiles exhibited by a large sample of the configurations whereby one can visually inspect their levels of sensitiveness to the type of feature and to the kernel function/parameter value. Conclusions: Overall, the results evidence that all kernel machines are competitive in terms of accuracy, with the standard and least squares SVMs prevailing more consistently. Moreover, the choice of the kernel function and parameter value as well as the choice of the feature extractor are critical decisions to be taken, albeit the choice of the wavelet family seems not to be so relevant. Also, the statistical values calculated over the Lyapunov exponents were good sources of signal representation, but not as informative as their wavelet counterparts. Finally, a typical sensitivity profile has emerged among all types of machines, involving some regions of stability separated by zones of sharp variation, with some kernel parameter values clearly associated with better accuracy rates (zones of optimality). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
High performance liquid chromatographic (HPLC) and UV derivative spectrophotometric (UVDS) methods were developed and validated for the quantitative determination of sotalol hydrochloride in tablets. The HPLC method was performed on a C18 column with fluorescence detection. The excitation and emission wavelengths were 235 and 310nm, respectively. The mobile phase was composed of acetonitrile-water containing 0.1% trietylamine (7:93v/v) and pH adjusted to 4.6 with formic acid. The UVDS method was performed taking a signal at 239.1nm in the first derivative. The correlation coefficients (r) obtained were 0.9998 and 0.9997 for HPLC and UVDS methods, respectively. The proposed methods are simple and adaptable to routine analysis.
Resumo:
Background The aim of this study was to validate a biomagnetic method (alternate current biosusceptometry, ACB) for monitoring gastric wall contractions in rats. Methods In vitro data were obtained to establish the relationship between ACB and the strain-gauge (SG) signal amplitude. In vivo experiments were performed in pentobarbital-anesthetized rats with SG and magnetic markers previously implanted under the gastric serosa or after ingestion of magnetic material. Gastric motility was quantified from the tracing amplitudes and frequency profiles obtained by Fast Fourier Transform. Key Results The correlation between in vitro signal amplitudes was strong (R = 0.989). The temporal cross-correlation coefficient between the ACB and SG signal amplitude was higher (P < 0.0001) in the postprandial (88.3 +/- 9.1 V) than in the fasting state (31.0 +/- 16.9 V). Irregular signal profiles, low contraction amplitudes, and smaller signal-to-noise ratios explained the poor correlation between techniques for fasting-state recordings. When a magnetic material was ingested, there was also strong correlation in the frequency and signal amplitude and a small phase-difference between the techniques. The contraction frequencies using ACB were 0.068 +/- 0.007 Hz (postprandial) and 0.058 +/- 0.007 Hz (fasting) (P < 0.002) and those using SG were 0.066 +/- 0.006 Hz (postprandial) and 0.059 +/- 0.008 Hz (fasting) (P < 0.005). Conclusions & Inferences In summary, ACB is reliable for monitoring gastric wall contractions using both implanted and ingested magnetic materials, and may serve as an accurate and sensitive technique for gastrointestinal motility studies.
Resumo:
Purpose - To develop and validate a psychometric scale for assessing image quality perception for chest X-ray images. Methods - Bandura's theory was used to guide scale development. A review of the literature was undertaken to identify items/factors which could be used to evaluate image quality using a perceptual approach. A draft scale was then created (22 items) and presented to a focus group (student and qualified radiographers). Within the focus group the draft scale was discussed and modified. A series of seven postero-anterior chest images were generated using a phantom with a range of image qualities. Image quality perception was confirmed for the seven images using signal-to-noise ratio (SNR 17.2–36.5). Participants (student and qualified radiographers and radiology trainees) were then invited to independently score each of the seven images using the draft image quality perception scale. Cronbach alpha was used to test interval reliability. Results - Fifty three participants used the scale to grade image quality perception on each of the seven images. Aggregated mean scale score increased with increasing SNR from 42.1 to 87.7 (r = 0.98, P < 0.001). For each of the 22 individual scale items there was clear differentiation of low, mid and high quality images. A Cronbach alpha coefficient of >0.7 was obtained across each of the seven images. Conclusion - This study represents the first development of a chest image quality perception scale based on Bandura's theory. There was excellent correlation between the image quality perception scores derived using the scale and the SNR. Further research will involve a more detailed item and factor analysis.
Resumo:
PURPOSE: Cardiovascular magnetic resonance (CMR) has become a robust and important diagnostic imaging modality in cardiovascular medicine. However,insufficient image quality may compromise its diagnostic accuracy. No standardized criteria are available to assess the quality of CMR studies. We aimed todescribe and validate standardized criteria to evaluate the quality of CMR studies including: a) cine steady-state free precession, b) delayed gadoliniumenhancement, and c) adenosine stress first-pass perfusion. These criteria will serve for the assessment of the image quality in the setting of the Euro-CMR registry.METHOD AND MATERIALS: First, a total of 45 quality criteria were defined (35 qualitative criteria with a score from 0-3, and 10 quantitative criteria). Thequalitative score ranged from 0 to 105. The lower the qualitative score, the better the quality. The quantitative criteria were based on the absolute signal intensity (delayed enhancement) and on the signal increase (perfusion) of the anterior/posterior left ventricular wall after gadolinium injection. These criteria were then applied in 30 patients scanned with a 1.5T system and in 15 patients scanned with a 3.0T system. The examinations were jointly interpreted by 3 CMR experts and 1 study nurse. In these 45 patients the correlation between the results of the quality assessment obtained by the different readers was calculated.RESULTS: On the 1.5T machine, the mean quality score was 3.5. The mean difference between each pair of observers was 0.2 (5.7%) with a mean standarddeviation of 1.4. On the 3.0T machine, the mean quality score was 4.4. The mean difference between each pair of onservers was 0.3 (6.4%) with a meanstandard deviation of 1.6. The quantitative quality assessments between observers were well correlated for the 1.5T machine: R was between 0.78 and 0.99 (pCONCLUSION: The described criteria for the assessment of CMR image quality are robust and have a low inter-observer variability, especially on 1.5T systems.CLINICAL RELEVANCE/APPLICATION: These criteria will allow the standardization of CMR examinations. They will help to improve the overall quality ofexaminations and the comparison between clinical studies.
Resumo:
Recently published criteria using clinical (ataxia or asymmetrical distribution at onset or full development, and sensory loss not restricted to the lower limbs) and electrophysiological items (less than two abnormal lower limb motor nerves and at least an abolished SAP or three SAP below 30% of lower limit of normal in the upper limbs) were sensitive and specific for the diagnosis of sensory neuronopathy (SNN) (Camdessanche et al., Brain, 2009). However, these criteria need to be validated on a large multicenter population. For this, a database collecting cases from fifteen Reference Centers for Neuromuscular diseases in France and Switzerland is currently developed. So far, data from 120 patients with clinically pure sensory neuropathy have been collected. Cases were classified independently from the evaluated criteria as SNN (53), non-SNN (46) or suspected SNN (21) according to the expert's diagnosis. Using the criteria, SNN was possible in 83% (44/53), 23.9% (11/46) and 71.4% (15/21) of cases, respectively. In the non-SSN group, half of the patients with a diagnosis of possible SSN had an ataxic form of inflammatory demyelinating neuropathy. In the SNN group, half of those not retained as possible SNN had CANOMAD, paraneoplasia, or B12 deficiency. In a second step, after application of the items necessary to reach the level of probable SNN (no biological or electrophysiological abnormalities excluding SNN; presence of onconeural antibody, cisplatin treatment, Sj ¨ ogren's syndrome or spinal cord MRI high signal in the posterior column), a final diagnosis of possible or probable SNN was obtained in, respectively, 90.6% (48/53), 8.8% (4/45), and 71.4% (15/21) of patients in the three groups. Among the 5 patients with a final non-SNN but initial SNN diagnosis, 3 had motor conduction abnormalities (one with CANOMAD) and among the 4 patients with a final SNN but initial non-SSN diagnosis, one had anti-Hu antibody and one was discussed as a possible ataxic CIDP. These preliminary results confirm the sensitivity and specificity of the proposed criteria for the diagnosis of SNN.
Resumo:
PURPOSE: To improve fat saturation in coronary MRA at 3T by using a spectrally selective adiabatic T2 -Prep (WSA-T2 -Prep). METHODS: A conventional adiabatic T2 -Prep (CA-T2 -Prep) was modified, such that the excitation and restoration pulses were of differing bandwidths. On-resonance spins are T2 -Prepared, whereas off-resonance spins, such as fat, are spoiled. This approach was combined with a CHEmically Selective Saturation (CHESS) pulse to achieve even greater fat suppression. Numerical simulations were followed by phantom validation and in vivo coronary MRA. RESULTS: Numerical simulations demonstrated that augmenting a CHESS pulse with a WSA-T2 -Prep improved robustness to B1 inhomogeneities and that this combined fat suppression was effective over a broader spectral range than that of a CHESS pulse in a conventional T2 -Prepared sequence. Phantom studies also demonstrated that the WSA-T2 -Prep+CHESS combination produced greater fat suppression across a range of B1 values than did a CA-T2 -Prep+CHESS combination. Lastly, in vivo measurements demonstrated that the contrast-to-noise ratio between blood and myocardium was not adversely affected by using a WSA-T2 -Prep, despite the improved abdominal and epicardial fat suppression. Additionally, vessel sharpness improved. CONCLUSION: The proposed WSA-T2 -Prep method was shown to improve fat suppression and vessel sharpness as compared to a CA-T2 -Prep technique, and to also increase fat suppression when combined with a CHESS pulse.
Resumo:
BACKGROUND: Cardiovascular magnetic resonance (CMR) has become an important diagnostic imaging modality in cardiovascular medicine. However, insufficient image quality may compromise its diagnostic accuracy. We aimed to describe and validate standardized criteria to evaluate a) cine steady-state free precession (SSFP), b) late gadolinium enhancement (LGE), and c) stress first-pass perfusion images. These criteria will serve for quality assessment in the setting of the Euro-CMR registry. METHODS: Thirty-five qualitative criteria were defined (scores 0-3) with lower scores indicating better image quality. In addition, quantitative parameters were measured yielding 2 additional quality criteria, i.e. signal-to-noise ratio (SNR) of non-infarcted myocardium (as a measure of correct signal nulling of healthy myocardium) for LGE and % signal increase during contrast medium first-pass for perfusion images. These qualitative and quantitative criteria were assessed in a total of 90 patients (60 patients scanned at our own institution at 1.5T (n=30) and 3T (n=30) and in 30 patients randomly chosen from the Euro-CMR registry examined at 1.5T). Analyses were performed by 2 SCMR level-3 experts, 1 trained study nurse, and 1 trained medical student. RESULTS: The global quality score was 6.7±4.6 (n=90, mean of 4 observers, maximum possible score 64), range 6.4-6.9 (p=0.76 between observers). It ranged from 4.0-4.3 for 1.5T (p=0.96 between observers), from 5.9-6.9 for 3T (p=0.33 between observers), and from 8.6-10.3 for the Euro-CMR cases (p=0.40 between observers). The inter- (n=4) and intra-observer (n=2) agreement for the global quality score, i.e. the percentage of assignments to the same quality tertile ranged from 80% to 88% and from 90% to 98%, respectively. The agreement for the quantitative assessment for LGE images (scores 0-2 for SNR <2, 2-5, >5, respectively) ranged from 78-84% for the entire population, and 70-93% at 1.5T, 64-88% at 3T, and 72-90% for the Euro-CMR cases. The agreement for perfusion images (scores 0-2 for %SI increase >200%, 100%-200%,<100%, respectively) ranged from 81-91% for the entire population, and 76-100% at 1.5T, 67-96% at 3T, and 62-90% for the Euro-CMR registry cases. The intra-class correlation coefficient for the global quality score was 0.83. CONCLUSIONS: The described criteria for the assessment of CMR image quality are robust with a good inter- and intra-observer agreement. Further research is needed to define the impact of image quality on the diagnostic and prognostic yield of CMR studies.
Resumo:
Fondements : La recherche sur l'oedème postopératoire consécutif à la chirurgie prothétique du genou est peu développée, notamment en raison de l'absence d'une méthode de mesure adaptée. Une collaboration entre physiothérapeutes et ingénieurs a permis de développer et valider une méthode de mesure innovante et facilement applicable. Les physiothérapeutes ont identifié un besoin clinique, les ingénieurs ont apporté leur savoir technologique, et l'équipe a conjointement élaboré le protocole de mesure et effectué l'étude de validation. Introduction : La bioimpédance est fréquemment utilisée pour évaluer l'oedème par l'analyse d'un signal électrique passant au travers du corps, en extrapolant la résistance théorique à une fréquence égale à zéro (R0). La mesure s'avère fiable et rapide, mais n'a jamais été appliquée et validée pour l'évaluation de l'oedème en chirurgie orthopédique. Objectif : L'objectif de l'étude est de valider la mesure de l'oedème du membre inférieur par bioimpédance, chez des patients ayant bénéficié d'une prothèse totale de genou (PTG). Questionnement : Après nous être assurés de l'absence d'influence de l'implant métallique de la PTG sur la mesure, nous nous questionnions sur la validité et la fiabilité des mesures de bioimpédance dans ce contexte. Méthodes : Deux évaluateurs ont mesuré à tour de rôle et à deux reprises successives l'oedème chez 24 patients opérés d'une PTG, à trois temps différents (préopératoire, J+2, J+8). L'oedème a été évalué par bioimpédance (R0) et par conversion en volume de mesures centimétriques du membre inférieur (MI). Nous avons calculé le ratio moyen des MI pour chaque méthode. Nous avons évalué la reproductibilité intra- et inter-observateurs de la bioimpédance (coefficient de corrélation intraclasse, CCI) et la corrélation entre méthodes (Spearman). Résultats : Le ratio moyen opéré/sain du volume des MI est de 1.04 (SD ± 0.06) en préopératoire, 1.18 (SD ± 0.09) à J+2 et 1.17 (SD ± 0.10) à J+8. Le ratio sain/opéré des MI de R0 est de 1.04 (SD ± 0.07) en préopératoire, 1.51 (SD ± 0.22) à J+2 et 1.65 (SD ± 0.21) à J+8. En préopératoire, à J+2 et J+8, les CCI tous supérieurs à 0.95 pour la reproductibilité intra- et inter-observateurs de la bioimpédance. La corrélation entre méthodes est de 0.71 en préopératoire, 0.61 à J2 et 0.33 à J8. Analyse et conclusion : La variation du ratio des MI entre les temps préopératoire, J+2 et J+8 est plus marquée pour R0. La mesure de bioimpédance bénéficie d'une excellente reproductibilité intra- et inter-observateurs. L'évolution dans le temps de la corrélation entre méthodes peut être expliquée par l'influence potentielle de facteurs confondants sur R0 (modification de la composition liquidienne) et par l'influence de l'atrophie musculaire postopératoire sur la mesure de volume. La collaboration physiothérapeutes-ingénieurs a permis le développement et l'évaluation d'une nouvelle méthode de mesure.
Resumo:
Différentes méthodes ayant pour objectif une utilisation optimale d'antennes radio-fréquences spécialisées en imagerie par résonance magnétique sont développées et validées. Dans un premier temps, il est démontré qu'une méthode alternative de combinaison des signaux provenant des différents canaux de réception d'un réseau d'antennes mène à une réduction significative du biais causé par la présence de bruit dans des images de diffusion, en comparaison avec la méthode de la somme-des-carrés généralement utilisée. Cette réduction du biais engendré par le bruit permet une amélioration de l'exactitude de l'estimation de différents paramètres de diffusion et de diffusion tensorielle. De plus, il est démontré que cette méthode peut être utilisée conjointement avec une acquisition régulière sans accélération, mais également en présence d'imagerie parallèle. Dans une seconde perspective, les bénéfices engendrés par l'utilisation d'une antenne d'imagerie intravasculaire sont étudiés. Suite à une étude sur fantôme, il est démontré que l'imagerie par résonance magnétique intravasculaire offre le potentiel d'améliorer significativement l'exactitude géométrique lors de mesures morphologiques vasculaires, en comparaison avec les résultats obtenus avec des antennes de surface classiques. Il est illustré qu'une exactitude géométrique comparable à celle obtenue grâce à une sonde ultrasonique intravasculaire peut être atteinte. De plus, plusieurs protocoles basés sur une acquisition de type balanced steady-state free-precession sont comparés dans le but de mettre en évidence différentes relations entre les paramètres utilisés et l'exactitude géométrique obtenue. En particulier, des dépendances entre la taille du vaisseau, le rapport signal-sur-bruit à la paroi vasculaire, la résolution spatiale et l'exactitude géométrique atteinte sont mises en évidence. Dans une même optique, il est illustré que l'utilisation d'une antenne intravasculaire permet une amélioration notable de la visualisation de la lumière d'une endoprothèse vasculaire. Lorsque utilisée conjointement avec une séquence de type balanced steady-state free-precession utilisant un angle de basculement spécialement sélectionné, l'imagerie par résonance magnétique intravasculaire permet d'éliminer complètement les limitations normalement engendrées par l'effet de blindage radio-fréquence de l'endoprothèse.
Resumo:
Réalisé en cotutelle avec l'Université Joseph Fourier École Doctorale Ingénierie pour la Santé,la Cognition et l'Environnement (France)