975 resultados para Shiga toxin producing Escherichia coli
Resumo:
Aims: To investigate interactions between rumen protozoa and Shiga toxin-producing Escherichia coli (STEC) and to ascertain whether it is likely that rumen protozoa act as ruminant hosts for STEC. Methods and Results: The presence of stx genes in different microbial fractions recovered from cattle and sheep rumen contents and faeces was examined using PCR. In animals shedding faecal STEC, stx genes were not detected in the rumen bacterial or rumen protozoal fractions. Direct interactions between ruminal protozoa and STEC were investigated by in vitro co-incubation. Rumen protozoa did not appear to ingest STEC, a STEC lysogen or non-STEC E. coli populations when co-incubated. Conclusions: The ruminal environment is unlikely to be a preferred habitat for STEC. Bacterial grazing by rumen protozoa appears to have little, if any, effect on STEC populations. Significance and Impact of the Study: This study indicates that ruminal protozoa are unlikely to be a major factor in the survival of STEC in ruminants. They appear as neither a host that protects STEC from the ruminal environment nor a predator that might reduce STEC numbers.
Resumo:
Biofilm formation on abiotic surfaces may provide a source of microbial contamination and may also enhance microbial environmental survival. The role of fimbrial expression by Shiga toxin-producing Escherichia coli (STEC) in biofilm formation is poorly understood. This study aimed to investigate the role of STEC type 1 and curli fimbriae in adhesion to and biofilm formation on abiotic surfaces. None of 13 O157:H7 isolates expressed either fimbrial type whereas 11 of 13 and 5 of 13 non-O157 STEC elaborated type 1 fimbriae and curli fimbriae, respectively. Mutants made by allelic exchange of a diarrhoeal non-O157 STEC isolate, O128:H2 (E41509), unable to elaborate type 1 and curli fimbriae were made for adherence and biofilm assays. Elaboration of type 1 fimbriae was necessary for the adhesion to abiotic surfaces whereas curliation was associated with both adherence and subsequent biofilm formation. STEC O157:H7 adhered to thermanox and glass but poorly to polystyrene. Additionally, STEC O157:H7 failed to form biofilms. These data indicate that certain STEC isolates are able to form biofilms and that the elaboration of curli fimbriae may enhance biofilm formation leading to possible long-term survival and a potential source of human infection.
Resumo:
Aims: Sheep are important carriers of Shiga toxin-producing Escherichia coli (STEC) in several countries. However, there are a few reports about ovine STEC in American continent. Methods and Results: About 86 E. coli strains previously isolated from 172 healthy sheep from different farms were studied. PCR was used for detection of stx(1), stx(2), eae, ehxA and saa genes and for the identification of intimin subtypes. Restriction fragment length polymorphism (RFLP)-PCR was performed to investigate the variants of stx(1) and stx(2), and the flagellar antigen (fliC) genes in nonmotile isolates. Five isolates were eae(+) and stx(-), and belonged to serotypes O128:H2/beta-intimin (2), O145:H2/gamma, O153:H7/beta and O178:H7/epsilon. Eighty-one STEC isolates were recovered, and the stx genotypes identified were stx(1c)stx(2d-O118) (46.9%), stx(1c) (27.2%), stx(2d-O118) (23.4%), and stx(1c)stx(2dOX3a) (2.5%). Pulsed-field gel electrophoresis (PFGE) revealed 27 profiles among 53 STEC and atypical enteropathogenic Escherichia coli (EPEC) isolates. Conclusions: This study demonstrated that healthy sheep in Sao Paulo, Brazil, can be carriers of potential human pathogenic STEC and atypical EPEC. Significance and Impact of the Study: As some of the STEC serotypes presently found have been involved with haemolytic uraemic syndrome (HUS) in other countries, the important role of sheep as sources of STEC infection in our settings should not be disregarded.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Escherichia coli Shiga toxigênica (STEC) e E. coli Attaching- effacing (AEEC) têm sido associadas à doença diarréica em cachorros. Entre janeiro e dezembro de 2006, 92 cepas de E. coli isoladas de 25 cachorros diarréicos foram examinadas. As cepas foram analisadas para a detecção dos genes produtores de Shiga toxina (stx 1 e stx 2) e da intimina (eae). Por meio de PCR foi observado que sete cepas (7,6%) portavam o gene stx 1, cinco cepas (5,4%) carregavam o gene stx 2 e nenhum cepa apresentou ambos os genes associados. Nove cepas de E. coli (9,8%) apresentaram o gene eae isoladamente. Treze das cepas (62,0%) que apresentaram os genes stx ou eae também apresentaram a produção de a hemolisina. As cepas que apresentaram genes de virulência foram também examinadas em relação à resistência a 12 agentes antimicrobianos. As resistências mais comuns foram para cefalotina (85,7%), estreptomicina (81,0%), amoxicilina (71,4%) e gentamicina (71,4%).
Resumo:
Aims: To determine the prevalence and molecular characteristics of Shiga toxin-producing Escherichia coli (STEC) isolates from bovine mastitic milk in Brazil.Methods and Results: A total of 2144 milk samples from dairy cattle showing mastitis were screened for the presence of E. coli. A total of 182 E. coli isolates were selected and examined. All were subjected to dot blot analysis using the CVD419 probe for the detection of the enterohaemolysin (hly) gene, and to a multiplex PCR for the detection of stx1, stx2 and eaeA genes. STEC were isolated from 22 (12.08%) milk samples. All the STEC isolates were tested for sensibility to 10 antimicrobials; the resistances most commonly observed were to cephalothin (86.3%), tetracycline (63.6%) and doxycycline (63.6%).Conclusion: STEC isolates were found in bovine mastitic milk in Brazil.Significance and Impact of the Study: STEC isolates from mastitic milk were potentially pathogenic for human in that they belonged to serogroups associated with diarrhoea and haemolytic-uraemic syndrome, some of them were stx2, eaeA and hly positive.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A recent report on the detection in a Crohn's disease (CD) patient of an adherent and invasive Shiga toxin producing Escherichia coli (STEC) (Gut pathogens 2015, 7:2) prompted a commentary expressing some skepticism on the significance of the paper findings (Gut pathogens 2015, 7:15). Besides focusing on recurrent issues concerning the difficulties in defining a pathogen, the opinion considers recent data demonstrating the presence of virulence factors in a commercial probiotic. In response to the commentary's observations, additional information on the described STEC strain, as well as a short discussion on CD associated E. coli are presented here.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Escherichia coli is suspected to be involved with Crohn's disease. Adherence and invasion to epithelial cells are properties commonly observed in these bacteria. Here, we present a draft genome sequence of E. coli D92/09, a multidrug-resistant strain, which besides showing these properties produces Shiga cytotoxin-1 and possibly other toxins.
Resumo:
This case describes evidence for a Shiga toxin-producing Escherichia coli (STEC) O146:H28 infection leading to hemolytic uremic syndrome in a neonate. STEC O146:H28 was linked hitherto with asymptomatic carriage in humans. Based on strain characteristics and genotyping data, the mother is a healthy carrier who transmitted the STEC during delivery. STEC strains belonging to the low-pathogenic STEC group must also be considered in the workup of neonatal hemolytic uremic syndrome.
Resumo:
Infection with Shiga-toxin producing Escherichia coli (STEC) may result in the development of the haemolytic-uremic syndrome (HUS), the main cause of acute renal failure in children. While O157:H7 STEC are associated with large outbreaks of HUS, it is difficult to predict whether a non-O157:H7 isolate can be pathogenic for humans. The mucosal innate immune response plays a central role in the pathogenesis of HUS; therefore, we compared the induction of IL-8 and CCL20 in human colon epithelial cells infected with strains belonging to different serotypes, isolated from cattle or from HUS patients. No correlation was observed between strain virulence and chemokine gene expression. Rather, the genetic background of the strains seems to determine the chemokine gene expression profile. Investigating the contribution of different bacterial factors in this process, we show that the type III secretion system of O157:H7 bacteria, but not the intimate adhesion, is required to stimulate the cells. In addition, H7, H10, and H21 flagellins are potent inducers of chemokine gene expression when synthesized in large amount.
Resumo:
Only a subset of Shiga toxin (Stx)-producing Escherichia coli (STEC) are human pathogens, but the characteristics that account for differences in pathogenicity are not well understood. In this study, we investigated the distribution of the stx variants coding for Stx2 and its variants in highly virulent STEC of seropathotype A and low-pathogenic STEC of seropathotype C. We analysed and compared transcription of the corresponding genes, production of Shiga toxins, and stx-phage release in basal as well as in induced conditions. We found that the stx(2) variant was mainly associated with strains of seropathotype A, whereas most of the strains of seropathotype C possessed the stx(2-vhb) variant, which was frequently associated with stx(2), stx(2-vha) or stx(2c). Levels of stx(2) and stx(2)-related mRNA were higher in strains belonging to seropathotype A and in those strains of seropathotype C that express the stx(2) variant than in the remaining strains of seropathotype C. The stx(2-vhb) genes were the least expressed, in basal as well as in induced conditions, and in many cases did not seem to be carried by an inducible prophage. A clear correlation was observed between stx mRNA levels and stx-phage DNA in the culture supernatants, suggesting that most stx(2)-related genes are expressed only when they are carried by a phage. In conclusion, some relationship between stx(2)-related gene expression in vitro and the seropathotype of the STEC strains was observed. A higher expression of the stx(2) gene and a higher release of its product, in basal as well as in induced conditions, was observed in pathogenic strains of seropathotype A. A subset of strains of seropathotype C shows the same characteristics and could be a high risk to human health.