966 resultados para Shield volcano
Resumo:
El Estribo Volcanic Complex (EVC) is located in the northern part of the Michoacán–Guanajuato Volcanic Field within the Trans-Mexican Volcanic Belt (TMVB). El Estribo is located at the southern edge of the E-W Pátzcuaro fault that belongs to the Pátzcuaro-Jarácuaro graben, a western extension of the E-W Morelia–Acambay fault system. Stratigraphy, geochronology, chemistry, and mineral assemblages suggest that the volcanic complex was constructed in two periods separated by a ~ 100 ka volcanic hiatus: a) emission of lava flows that constructed a shield volcano between 126 ka, and b) mixed phreatomagmatic to Strombolian activity that formed a cinder cone ~ 28 ka. The magmas that fed these monogenetic volcanoes were able to use the same feeding system. The cinder cone itself was constructed by Strombolian fallouts and remobilized scoria beds, followed by an erosion period, and by a mixed phreatomagmatic to magmatic phase (Strombolian fallouts ending with lava flows). Soft-sedimentary deformation of beds and impact sags, cross-bedding, as well as pitting and hydrothermal cracks found in particles support the phreatomagmatic phase. The erupted magmas through time ejected basaltic andesitic lava flows (56.21–58.88% SiO2) that built the shield volcano and then basaltic andesitic scoria (57.65–59.05% SiO2) that constructed the cinder cone. Although they used the same feeding system, the geochemical data and the mineral chemistry of the magmas indicate that the shield volcano and the cinder cone were fed by different magma batches erupted thousands of years apart. Therefore, the location of El Estribo Volcanic Complex along an E-W fault that has generated two sector collapses of the shield volcano to the north may be directly linked to this complex redistribution of the magmatic paths to the surface. Our findings show that magmatic feeding systems within monogenetic volcanic fields could be long lived, questioning the classic view of the monogenetic nature of their volcanoes and yielding information about the potential volcanic risk of these settings, usually considered risk-free.
Resumo:
The study reported here, constitutes a full review of the major geological events that have influenced the morphological development of the southeast Queensland region. Most importantly, it provides evidence that the region’s physiography continues to be geologically ‘active’ and although earthquakes are presently few and of low magnitude, many past events and tectonic regimes continue to be strongly influential over drainage, morphology and topography. Southeast Queensland is typified by highland terrain of metasedimentary and igneous rocks that are parallel and close to younger, lowland coastal terrain. The region is currently situated in a passive margin tectonic setting that is now under compressive stress, although in the past, the region was subject to alternating extensional and compressive regimes. As part of the investigation, the effects of many past geological events upon landscape morphology have been assessed at multiple scales using features such as the location and orientation of drainage channels, topography, faults, fractures, scarps, cleavage, volcanic centres and deposits, and recent earthquake activity. A number of hypotheses for local geological evolution are proposed and discussed. This study has also utilised a geographic information system (GIS) approach that successfully amalgamates the various types and scales of datasets used. A new method of stream ordination has been developed and is used to compare the orientation of channels of similar orders with rock fabric, in a topologically controlled approach that other ordering systems are unable to achieve. Stream pattern analysis has been performed and the results provide evidence that many drainage systems in southeast Queensland are controlled by known geological structures and by past geological events. The results conclude that drainage at a fine scale is controlled by cleavage, joints and faults, and at a broader scale, large river valleys, such as those of the Brisbane River and North Pine River, closely follow the location of faults. These rivers appear to have become entrenched by differential weathering along these planes of weakness. Significantly, stream pattern analysis has also identified some ‘anomalous’ drainage that suggests the orientations of these watercourses are geologically controlled, but by unknown causes. To the north of Brisbane, a ‘coastal drainage divide’ has been recognized and is described here. The divide crosses several lithological units of different age, continues parallel to the coast and prevents drainage from the highlands flowing directly to the coast for its entire length. Diversion of low order streams away from the divide may be evidence that a more recent process may be the driving force. Although there is no conclusive evidence for this at present, it is postulated that the divide may have been generated by uplift or doming associated with mid-Cenozoic volcanism or a blind thrust at depth. Also north of Brisbane, on the D’Aguilar Range, an elevated valley (the ‘Kilcoy Gap’) has been identified that may have once drained towards the coast and now displays reversed drainage that may have resulted from uplift along the coastal drainage divide and of the D’Aguilar blocks. An assessment of the distribution and intensity of recent earthquakes in the region indicates that activity may be associated with ancient faults. However, recent movement on these faults during these events would have been unlikely, given that earthquakes in the region are characteristically of low magnitude. There is, however, evidence that compressive stress is building and being released periodically and ancient faults may be a likely place for this stress to be released. The relationship between ancient fault systems and the Tweed Shield Volcano has also been discussed and it is suggested here that the volcanic activity was associated with renewed faulting on the Great Moreton Fault System during the Cenozoic. The geomorphology and drainage patterns of southeast Queensland have been compared with expected morphological characteristics found at passive and other tectonic settings, both in Australia and globally. Of note are the comparisons with the East Brazilian Highlands, the Gulf of Mexico and the Blue Ridge Escarpment, for example. In conclusion, the results of the study clearly show that, although the region is described as a passive margin, its complex, past geological history and present compressive stress regime provide a more intricate and varied landscape than would be expected along typical passive continental margins. The literature review provides background to the subject and discusses previous work and methods, whilst the findings are presented in three peer-reviewed, published papers. The methods, hypotheses, suggestions and evidence are discussed at length in the final chapter.
Resumo:
The 20th May 2006 lava dome collapse of the Soufrière Hills Volcano, Montserrat, had a total non-dense rock equivalent (non-DRE) collapse volume of approximately 115 × 10 6 m 3. The majority of this volume was deposited into the ocean. The collapse was rapid, 85% of the mobilized volume being removed in just 35 min, giving peak pyroclastic flow flux of 66 × 10 3 m 3 s -1. Channel and levee facies on the submarine flanks of the volcano and formation of a thick, steep-sided ridge, suggest that the largest and most dense blocks were transported proximally as a high concentration granular flow. Of the submerged volume, 30% was deposited from the base of this granular flow, forming a linear, high-relief ridge that extends 7 km from shore. The remaining 70% of the submerged volume comprises the finer grain sizes, which were transported at least 40 km by turbidity currents on gradients of <2°. At several localities, the May 2006 distal turbidity currents ran up 200 m of topography and eroded up to 20 cm of underlying substrate. Multiple turbidites are preserved, representing current reflection from the graben margins and deflection around topography. The high energy of the May 2006 collapse resulted in longer submarine run out than the larger (210 × 10 6 m 3) Soufrière Hills dome collapse in July 2003.
Resumo:
The 12 to 13 July 2003 andesite lava dome collapse at the Soufrière Hills volcano, Montserrat, provides the first opportunity to document comprehensively both the sub-aerial and submarine sequence of events for an eruption. Numerous pyroclastic flows entered the ocean during the collapse, depositing approximately 90% of the total material into the submarine environment. During peak collapse conditions, as the main flow penetrated the air–ocean interface, phreatic explosions were observed and a surge cloud decoupled from the main flow body to travel 2 to 3 km over the ocean surface before settling. The bulk of the flow was submerged and rapidly mixed with sea water forming a water-saturated mass flow. Efficient sorting and physical differentiation occurred within the flow before initial deposition at 500 m water depth. The coarsest components (∼60% of the total volume) were deposited proximally from a dense granular flow, while the finer components (∼40%) were efficiently elutriated into the overlying part of the flow, which evolved into a far-reaching turbidity current.
Resumo:
The Soufrière Hills volcano, Montserrat, West Indies, has undergone a series of dome growth and collapse events since the eruption began in 1995. Over 90% of the pyroclastic material produced has been deposited into the ocean. Sampling of these submarine deposits reveals that the pyroclastic flows mix rapidly and violently with the water as they enter the sea. The coarse components (pebbles to boulders) are deposited proximally from dense basal slurries to form steep-sided, near-linear ridges that intercalate to form a submarine fan. The finer ash-grade components are mixed into the overlying water column to form turbidity currents that flow over distances >30 km from the source. The total volume of pyroclastic material off the east coast of Montserrat exceeds 280 × 106 m3, with 65% deposited in proximal lobes and 35% deposited as distal turbidites.
Resumo:
Soufrière Hills volcano, Montserrat, has been erupting since 1995. During the current eruption, a large part of the material produced by the volcano has been transported into the sea, modifying the morphology of the submarine flanks of the volcano. We present a unique set of swath bathymetric data collected offshore from Montserrat in 1999, 2002 and 2005. From 1999 to 2002, pyroclastic flows associated with numerous dome collapses entered the sea to produce 100 Mm3 deposit. From 2002 to 2005, the 290 Mm3 submarine deposit is mainly from the 12–13 July 2003 collapse. These data allow us to estimate that, by May 2005, at least 482 Mm3 of material had been deposited on the sea floor since 1995. We compare on-land characteristics and volumes of dome collapse events with the submarine deposits and propose a new analysis of their emplacement on the submarine flanks of the volcano. The deposition mechanism shows a slope dependence, with the maximum thickness of deposit before the break in the slope, probably because of the type of the dense granular flow involved. We conclude that from 1995 to 2005 more than 75% of the erupted volume entered the sea.
Resumo:
This contribution describes two mass movement deposits (total volume ~0.5 km3) identified in seven marine cores located 8 to 15 km offshore southern Montserrat, West Indies. The deposits were emplaced in the last 35 ka and have not previously been recognised in either the subaerial or distal submarine records. Age constraints, provided by radiocarbon dating, show that an explosive volcanic eruption occurred at ca 8–12 ka, emplacing a primary eruption-related deposit that overlies a large (~0.3 km3) reworked bioclastic and volcaniclastic flow deposit, formed from a shelf collapse between 8 and 35 ka. The origin of these deposits has been deduced through the correlation of marine sediment cores, component analysis and geochemical analysis. The 8–12 ka primary volcanic deposit was likely derived from a highly-erosive pyroclastic flow from the Soufrière Hills volcano that entered the ocean and mixed with the water column forming a water-supported density current. Previous investigations of the eruption record suggested that there was a hiatus in activity at the Soufrière Hills volcano between 16 and 6 ka. The ca 8–12 ka eruptive episode identified here shows that this hiatus was shorter than previously hypothesised, and thus highlights the importance of obtaining an accurate and completemarine record of events offshore from volcanic islands and incorporating such data into eruption history reconstructions. Comparisons with the submarine deposit characteristics of the 2003 dome collapse also suggests that the ~8–12 ka eruptive episode was more explosive than eruptions from the current eruptive episode.
Resumo:
We describe a new species of dasyurid marsupial within the genus Antechinus that was previously known as a northern outlier of Dusky Antechinus (A. swainsonii). The Black-tailed Antechinus, Antechinus arktos sp. nov., is known only from areas of high altitude and high rainfall on the Tweed Volcano caldera of far south-east Queensland and north-east New South Wales, Australia. Antechinus arktos formerly sheltered under the taxonomic umbrella of A. swainsonii mimetes, the widespread mainland form of Dusky Antechinus. With the benefit of genetic hindsight, some striking morphological differences are herein resolved: A. s. mimetes is more uniformly deep brown-black to grizzled grey-brown from head to rump, with brownish (clove brown—raw umber) hair on the upper surface of the hindfoot and tail, whereas A. arktos is more vibrantly coloured, with a marked change from greyish-brown head to orange-brown rump, fuscous black on the upper surface of the hindfoot and dense, short fur on the evenly black tail. Further, A. arktos has marked orange-brown fur on the upper and lower eyelid, cheek and in front of the ear and very long guard hairs all over the body; these characters are more subtle in A. s. mimetes. There are striking genetic differences between the two species: at mtDNA, A. s. mimetes from north-east New South Wales is 10% divergent to A. arktos from its type locality at Springbrook NP, Queensland. In contrast, the Ebor A. s. mimetes clades closely with conspecifics from ACT and Victoria. A. arktos skulls are strikingly different to all subspecies of A. swainsonii. A. arktos are markedly larger than A. s. mimetes and A. s. swainsonii (Tasmania) for a range of craniodental measures. Antechinus arktos were historically found at a few proximate mountainous sites in south-east Queensland, and have only recently been recorded from or near the type locality. Even there, the species is likely in low abundance. The Black-tailed Antechinus has plausibly been detrimentally affected by climate change in recent decades, and will be at further risk with increasing warming trends.
Resumo:
Since 1995 the eruption of the andesitic Soufrière Hills Volcano (SHV), Montserrat, has been studied in substantial detail. As an important contribution to this effort, the Seismic Experiment with Airgunsource-Caribbean Andesitic Lava Island Precision Seismo-geodetic Observatory (SEA-CALIPSO) experiment was devised to image the arc crust underlying Montserrat, and, if possible, the magma system at SHV using tomography and reflection seismology. Field operations were carried out in October–December 2007, with deployment of 238 seismometers on land supplementing seven volcano observatory stations, and with an array of 10 ocean-bottom seismometers deployed offshore. The RRS James Cook on NERC cruise JC19 towed a tuned airgun array plus a digital 48-channel streamer on encircling and radial tracks for 77 h about Montserrat during December 2007, firing 4414 airgun shots and yielding about 47 Gb of data. The main objecctives of the experiment were achieved. Preliminary analyses of these data published in 2010 generated images of heterogeneous high-velocity bodies representing the cores of volcanoes and subjacent intrusions, and shallow areas of low velocity on the flanks of the island that reflect volcaniclastic deposits and hydrothermal alteration. The resolution of this preliminary work did not extend beyond 5 km depth. An improved three-dimensional (3D) seismic velocity model was then obtained by inversion of 181 665 first-arrival travel times from a more-complete sampling of the dataset, yielding clear images to 7.5 km depth of a low-velocity volume that was interpreted as the magma chamber which feeds the current eruption, with an estimated volume 13 km3. Coupled thermal and seismic modelling revealed properties of the partly crystallized magma. Seismic reflection analyses aimed at imaging structures under southern Montserrat had limited success, and suggest subhorizontal layering interpreted as sills at a depth of between 6 and 19 km. Seismic reflection profiles collected offshore reveal deep fans of volcaniclastic debris and fault offsets, leading to new tectonic interpretations. This chapter presents the project goals and planning concepts, describes in detail the campaigns at sea and on land, summarizes the major results, and identifies the key lessons learned.
Resumo:
This article explains the scope and effect of the Disability Standards for Education 2005 (Cth) (the ‘Standards’) and considers whether they operate as a legislative sword or shield in respect of the battle to protect the education rights of people with disabilities in Australia. Evidence suggests that the Standards would be a more effective weapon if there were greater understanding of how they oblige education providers to make reasonable adjustments to their policies and practices to support access for and participation by students with disabilities.
Resumo:
Monogenetic volcanoes have long been regarded as simple in nature, involving single magma batches and uncomplicated evolutions; however, recent detailed research into individual centres is challenging that assumption. Mt Rouse (Kolor) is the volumetrically largest volcano in the monogenetic Newer Volcanics Province of southeast Australia. This study presents new major, trace and Sr–Nd–Pb isotope data for samples selected on the basis of a detailed stratigraphic framework analysis of the volcanic products from Mt Rouse. The volcano is the product of three magma batches geochemically similar to Ocean–Island basalts, featuring increasing LREE enrichment with each magma batch (batches A, B and C) but no evidence of crustal contamination; the Sr–Nd–Pb isotopes define two groupings. Modelling suggests that the magmas were sourced from a zone of partial melting crossing the lithosphere–asthenosphere boundary, with batch A forming a large volume partial melt in the deep lithosphere (1.7 GPa/55.5 km); and batches B and C from similar areas within the shallow asthenosphere (1.88 GPa/61 km and 1.94 GPa/63 km, respectively). The formation and extraction of these magmas may have been due to high deformation rates in the mantle caused by edge-driven convection and asthenospheric upwelling. The lithosphere– asthenosphere boundary is important with respect to NVP volcanism. An eruption chronology involves sequential eruption of magma batches A, C and B, followed by simultaneous eruption of batches A and B. Mt Rouse is a complex polymagmatic monogenetic volcano that illustrates the complexity of monogenetic volcanism and demonstrates the importance of combining detailed stratigraphic analysis alongside systematic geochemical sampling.
Resumo:
The largest Neoarchean gold deposits in the world-class St Ives Goldfield, Western Australia, occur in an area known as the Argo-Junction region (e.g. Junction, Argo and Athena). Why this region is so well endowed with large deposits compared with other parts of the St Ives Goldfield is currently unclear, because gold deposits at St Ives are hosted by a variety of lithologic units and were formed during at least three different deformational events. This paper presents an investigation into the stratigraphic architecture and evolution of the Argo-Junction region to assess its implications for gold metallogenesis. The results show that the region's stratigraphy may be subdivided into five regionally correlatable packages: mafic lavas of the Paringa Basalt; contemporaneously resedimented feldspar-rich pyroclastic debris of the Early Black Flag Group; coarse polymictic volcanic debris of the Late Black Flag Group; thick piles of mafic lavas and sub-volcanic sills of the Athena Basalt and Condenser Dolerite; and the voluminous quartz-rich sedimentary successions of the Early Merougil Group. In the Argo-Junction region, these units have an interpreted maximum thickness of at least 7,130 m, and thus represent an unusually thick accumulation of the Neoarchean volcano-sedimentary successions. It is postulated that major basin-forming structures that were active during deposition and emplacement of the voluminous successions later acted as important conduits during mineralisation. Therefore, a correlation exists between the location of the largest gold deposits in the St Ives Goldfield and the thickest parts of the stratigraphy. Recognition of this association has important implications for camp-scale exploration.
Resumo:
Lake Purrumbete maar is located in the intraplate, monogenetic Newer Volcanics Province in southeastern Australia. The extremely large crater of 3000. m in diameter formed on an intersection of two fault lines and comprises at least three coalesced vents. The evolution of these vents is controlled by the interaction of the tectonic setting and the properties of both hard and soft rock aquifers. Lithics in the maar deposits originate from country rock formations less than 300. m deep, indicating that the large size of the crater cannot only be the result of the downwards migration of the explosion foci in a single vent. Vertical crater walls and primary inward dipping beds evidence that the original size of the crater has been largely preserved. Detailed mapping of the facies distributions, the direction of transport of base surges and pyroclastic flows, and the distribution of ballistic block fields, form the basis for the reconstruction of the complex eruption history,which is characterised by alternations of the eruption style between relatively dry and wet phreatomagmatic conditions, and migration of the vent location along tectonic structures. Three temporally separated eruption phases are recognised, each starting at the same crater located directly at the intersection of two local fault lines. Activity then moved quickly to different locations. A significant volcanic hiatus between two of the three phases shows that the magmatic system was reactivated. The enlargement of especially the main crater by both lateral and vertical growth led to the interception of the individual craters and the formation of the large circular crater. Lake Purrumbete maar is an excellent example of how complicated the evolution of large, seemingly simple, circular maar volcanoes can be, and raises the question if these systems are actually monogenetic.
Resumo:
The aim of this thesis was to study the seismic tomography structure of the earth s crust together with earthquake distribution and mechanism beneath the central Fennoscandian Shield, mainly in southern and central Finland. The earthquake foci and some fault plane solutions are correlated with 3-D images of the velocity tomography. The results are discussed in relation to the stress field of the Shield and with other geophysical, e.g. geomagnetic, gravimetric, tectonic, and anisotropy studies of the Shield. The earthquake data of the Fennoscandian Shield has been extracted from the Nordic earthquake parameter data base which was founded at the time of inception of the earthquake catalogue for northern Europe. Eight earlier earthquake source mechanisms are included in a pilot study on creating a novel technique for calculating an earthquake fault plane solution. Altogether, eleven source mechanisms of shallow, weak earthquakes are related in the 3-D tomography model to trace stresses of the crust in southern and central Finland. The earthquakes in the eastern part of the Fennoscandian Shield represent low-active, intraplate seismicity. Earthquake mechanisms with NW-SE oriented horizontal compression confirm that the dominant stress field originates from the ridge-push force in the North Atlantic Ocean. Earthquakes accumulate in coastal areas, in intersections of tectonic lineaments, in main fault zones or are bordered by fault lines. The majority of Fennoscandian earthquakes concentrate on the south-western Shield in southern Norway and Sweden. Onwards, epicentres spread via the ridge of the Shield along the west-coast of the Gulf of Bothnia northwards along the Tornio River - Finnmark fault system to the Barents Sea, and branch out north-eastwards via the Kuusamo region to the White Sea Kola Peninsula faults. The local seismic tomographic method was applied to find the terrane distribution within the central parts of the Shield the Svecofennian Orogen. From 300 local explosions a total of 19765 crustal Pg- and Sg-wave arrival times were inverted to create independent 3-D Vp and Vs tomographic models, from which the Vp/Vs ratio was calculated. The 3-D structure of the crust is presented as a P-wave and for the first time as an S-wave velocity model, and also as a Vp/Vs-ratio model of the SVEKALAPKO area that covers 700x800 km2 in southern and central Finland. Also, some P-wave Moho-reflection data was interpolated to image the relief of the crust-mantle boundary (i.e. Moho). In the tomography model, the seismic velocities vary smoothly. The lateral variations are larger for Vp (dVp =0.7 km/s) than for Vs (dVs =0.4 km/s). The Vp/Vs ratio varies spatially more distinctly than P- and S-wave velocities, usually from 1.70 to 1.74 in the upper crust and from 1.72 to 1.78 in the lower crust. Schist belts and their continuations at depth are associated with lower velocities and lower Vp/Vs ratios than in the granitoid areas. The tomography modelling suggests that the Svecofennian Orogen was accreted from crustal blocks ranging in size from 100x100 km2 to 200x200 km2 in cross-sectional area. The intervening sedimentary belts have ca. 0.2 km/s lower P- and S-wave velocities and ca. 0.04 lower Vp/Vs ratios. Thus, the tomographic model supports the concept that the thick Svecofennian crust was accreted from several crustal terranes, some hidden, and that the crust was later modified by intra- and underplating. In conclusion, as a novel approach the earthquake focal mechanism and focal depth distribution is discussed in relation to the 3-D tomography model. The schist belts and the transformation zones between the high- and low-velocity anomaly blocks are characterized by deeper earthquakes than the granitoid areas where shallow events dominate. Although only a few focal mechanisms were solved for southern Finland, there is a trend towards strike-slip and oblique strike-slip movements inside schist areas. The normal dip-slip type earthquakes are typical in the seismically active Kuusamo district in the NE edge of the SVEKALAPKO area, where the Archean crust is ca. 15-20 km thinner than the Proterozoic Svecofennian crust. Two near vertical dip-slip mechanism earthquakes occurred in the NE-SW junction between the Central Finland Granitoid Complex and the Vyborg rapakivi batholith, where high Vp/Vs-ratio deep-set intrusion splits the southern Finland schist belt into two parts in the tomography model.