978 resultados para Shield volcano
Resumo:
El Estribo Volcanic Complex (EVC) is located in the northern part of the Michoacán–Guanajuato Volcanic Field within the Trans-Mexican Volcanic Belt (TMVB). El Estribo is located at the southern edge of the E-W Pátzcuaro fault that belongs to the Pátzcuaro-Jarácuaro graben, a western extension of the E-W Morelia–Acambay fault system. Stratigraphy, geochronology, chemistry, and mineral assemblages suggest that the volcanic complex was constructed in two periods separated by a ~ 100 ka volcanic hiatus: a) emission of lava flows that constructed a shield volcano between 126 ka, and b) mixed phreatomagmatic to Strombolian activity that formed a cinder cone ~ 28 ka. The magmas that fed these monogenetic volcanoes were able to use the same feeding system. The cinder cone itself was constructed by Strombolian fallouts and remobilized scoria beds, followed by an erosion period, and by a mixed phreatomagmatic to magmatic phase (Strombolian fallouts ending with lava flows). Soft-sedimentary deformation of beds and impact sags, cross-bedding, as well as pitting and hydrothermal cracks found in particles support the phreatomagmatic phase. The erupted magmas through time ejected basaltic andesitic lava flows (56.21–58.88% SiO2) that built the shield volcano and then basaltic andesitic scoria (57.65–59.05% SiO2) that constructed the cinder cone. Although they used the same feeding system, the geochemical data and the mineral chemistry of the magmas indicate that the shield volcano and the cinder cone were fed by different magma batches erupted thousands of years apart. Therefore, the location of El Estribo Volcanic Complex along an E-W fault that has generated two sector collapses of the shield volcano to the north may be directly linked to this complex redistribution of the magmatic paths to the surface. Our findings show that magmatic feeding systems within monogenetic volcanic fields could be long lived, questioning the classic view of the monogenetic nature of their volcanoes and yielding information about the potential volcanic risk of these settings, usually considered risk-free.
Resumo:
Dissertação de Mestrado em Vulcanologia e Riscos Geológicos
Resumo:
Petrogenetic models for the origin of lamproites are evaluated using new major element, trace element, and Sr, Nd, and Pb isotope data for Holocene lamproites from the Gaussberg volcano in the East Antarctic Shield. Gaussberg lamproites exhibit very unusual Pb isotope compositions (Pb-206/Pb-204 = 17.44-17.55 and Pb-207/Pb-204 = 15.56-15.63), which in common Pb isotope space plot above mantle evolution lines and to the left of the meteorite isochron. Combined with very unradiogenic Nd, such compositions are shown to be inconsistent with an origin by melting of sub-continental lithospheric mantle. Instead, a model is proposed in which late Archaean continent-derived sediment is subducted as K-hollandite and other ultra-high-pressure phases and sequestered in the Transition Zone (or lower mantle) where it is effectively isolated for 2-3 Gyr. The high Pb-207/Pb-204 ratio is thus inherited from ancient continent-derived sediment, and the relatively low Pb-206/Pb-204 ratio is the result of a single stage of U/Pb fractionation by subduction-related U loss during slab dehydration. Sr and Nd isotope ratios, and trace element characteristics (e.g. Nb/Ta ratios) are consistent with sediment subduction and dehydration-related fractionation. Similar models that use variable time of isolation of subducted sediment can be derived for all lamproites. Our interpretation of lamproite sources has important implications for ocean island basalt petrogenesis as well as the preservation of geochemically anomalous reservoirs in the mantle.
Resumo:
We present a palaeomagnetic study on 38 lava flows and 20 dykes encompassing the past 1.3 Myr on S. Jorge Island (Azores ArchipelagoNorth Atlantic Ocean). The sections sampled in the southeastern and central/western parts of the island record reversed and normal polarities, respectively. They indicate a mean palaeomagnetic pole (81.3 degrees N, 160.7 degrees E, K= 33 and A95= 3.4 degrees) with a latitude shallower than that expected from Geocentric Axial Dipole assumption, suggesting an effect of non-dipolar components of the Earth magnetic field. Virtual Geomagnetic Poles of eight flows and two dykes closely follow the contemporaneous records of the Cobb Mountain Subchron (ODP/DSDP programs) and constrain the age transition from reversed to normal polarity at ca. 1.207 +/- 0.017 Ma. Volcano flank instabilities, probably related to dyke emplacement along an NNWSSE direction, led to southwestward tilting of the lava pile towards the sea. Two spatially and temporally distinct dyke systems have been recognized on the island. The eastern is dominated by NNWSSE trending dykes emplaced before the end of the Matuyama Chron, whereas in the central/western parts the eruptive fissures oriented WNWESE controlled the westward growth of the S. Jorge Island during the Brunhes Chron. Both directions are consistent with the present-day regional stress conditions deduced from plate kinematics and tectonomorphology and suggest the emplacement of dykes along pre-existing fractures. The distinct timing and location of each dyke system likely results from a slight shift of the magmatic source.
Resumo:
We present a palaeomagnetic study on 38 lava flows and 20 dykes encompassing the past 1.3 Myr on S. Jorge Island (Azores ArchipelagoNorth Atlantic Ocean). The sections sampled in the southeastern and central/western parts of the island record reversed and normal polarities, respectively. They indicate a mean palaeomagnetic pole (81.3 degrees N, 160.7 degrees E, K= 33 and A95= 3.4 degrees) with a latitude shallower than that expected from Geocentric Axial Dipole assumption, suggesting an effect of non-dipolar components of the Earth magnetic field. Virtual Geomagnetic Poles of eight flows and two dykes closely follow the contemporaneous records of the Cobb Mountain Subchron (ODP/DSDP programs) and constrain the age transition from reversed to normal polarity at ca. 1.207 +/- 0.017 Ma. Volcano flank instabilities, probably related to dyke emplacement along an NNWSSE direction, led to southwestward tilting of the lava pile towards the sea. Two spatially and temporally distinct dyke systems have been recognized on the island. The eastern is dominated by NNWSSE trending dykes emplaced before the end of the Matuyama Chron, whereas in the central/western parts the eruptive fissures oriented WNWESE controlled the westward growth of the S. Jorge Island during the Brunhes Chron. Both directions are consistent with the present-day regional stress conditions deduced from plate kinematics and tectonomorphology and suggest the emplacement of dykes along pre-existing fractures. The distinct timing and location of each dyke system likely results from a slight shift of the magmatic source.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia e Gestão Industrial
Resumo:
The Miocene PX1 gabbro-pyroxenite pluton, Fuerteventura, Canary Islands, is a 3.5 x 5.5 km shallow-level intrusion (0.15-0.2 GPa and 1100-1120 degrees C), interpreted as the feeder-zone to an ocean-island volcano. It displays a vertical magmatic banding expressed in five 50 to 100 metre-wide NNE-SSW trending alkaline gabbro sequences alternating with pyroxenites. This emplacement geometry was controlled by brittle to ductile shear zones, generated by a regional E-W extensional tectonic setting that affected Fuerteventura during the Miocene. At a smaller scale, the PX1 gabbro and pyroxenite bands consist of metre-thick differentiation units, which suggest emplacement by periodic injection of magma pulses as vertical dykes that amalgamated, similarly to a sub-volcanic sheeted dyke complex. Individual dykes underwent internal differentiation following a solidification front parallel to the dyke edges. This solidification front may have been favoured by a significant lateral/horizontal thermal gradient, expressed by the vertical banding in the gabbros, the fractionation asymmetry within individual dykes and the migmatisation of the wall rocks. Pyroxenitic layers result from the fractionation and accumulation of clinopyroxene +/- olivine +/- plagioclase crystals from a mildly alkaline basaltic liquid. They are interpreted as truncated differentiation sequences, from which residual melts were extracted at various stages of their chemical evolution by subsequent dyke intrusions, either next to or within the crystallising unit. Compaction and squeezing of the crystal mush is ascribed to the incoming and inflating magma pulses. The expelled interstitial liquid was likely collected and erupted along with the magma flowing through the newly injected dykes. Clinopyroxene mineral orientation - as evidenced by EBSD and micro X-ray tomography investigations - displays a marked pure-shear component, supporting the interpretation of the role of compaction in the generation of the pyroxenites. Conversely, gabbro sequences underwent minor melt extraction and are believed to represent crystallised coalesced magma batches emplaced at lower rates at the end of eruptive cycles. Clinopyroxene orientations in gabbros record a simple shear component suggesting syn-magmatic deformation parallel to observed NNE-SSW trending shear zones induced by the regional tensional stress field. This emplacement model implies a crystallisation time of 1 to 5 years for individual dykes, consistent with PX1 emplacement over less than 0.5 My. A minimum amount of approximately 150 km(3) of magma is needed to generate the pluton, part of it having been erupted through the Central Volcanic Centre of Fuerteventura. If the regional extensional tectonic regime controls the PX1 feeder-zone initiation and overall geometry, rates and volumes of magma depend on other, source-related factors. High injection rates are likely to induce intrusion growth rates larger than could be accommodated by the regional extension. In this case, dyke intrusion by propagation of a weak tip, combined with the inability of magma to circulate through previously emplaced and crystallised dykes could result in an increase of non-lithostatic pressure on previously emplaced mushy dyke walls; thus generating strong pure-shear compaction within the pluton feeder-zone and interstitial melt expulsion. These compaction-dominated processes are recorded by the cumulitic pyroxenite bands. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The bulk composition of magma erupted from Volcan Arenal has remained nearly constant (SiO2 = 53.6-54.9 wt%; MgO = 5.0-4.5 wt%) during almost 30 years of continuous activity (1969-1996). None the less, clinopyroxene (cpx) phenocrysts and their spinel inclusions record a much more complex open-system evolution in which steady-state production of the erupted basaltic andesitic magma is linked to episodic injections of basalt into Arenal's magma conduit/reservoir system. High-resolution major element zoning profiles (electron microprobe) on a large number of phenocrysts (>14,000 analyses), tied to back-scattered electron (BSE) images, have been used to assess the compositional characteristics of the magmatic end members as well as the timing and dynamics of magma replenishment events. No two cpx phenocrysts have exactly the same zoning profile. The vast majority of our analyses record the crystallization of cpx (Cr2O3 < 0.12 wt%; Mg# = 65-79; Al/Ti = 2-7) from a liquid comparable to or more evolved than erupted magma compositions. However, half of all cpx grains are cored by high-Cr cpx (Cr2O3 = 0.2-0.72 wt%) or contain similar basaltic compositions as abrupt growth bands in phenocrysts with and without high-Cr cores; phenocrysts with high-Cr cpx occur throughout the ongoing activity. In a few cases, high-Cr cpx occurs very near the outer margin of the grain without an apparent growth hiatus, particularly in 1968/69 and 1992/93. The main conclusions are: (1) all basaltic andesitic lavas erupted at Arenal during the ongoing activity that began in July, 1968, are the products of magma mixing, (2) clinopyroxenes record multiple replenishment events of basaltic magma in contrast to the near constancy of erupted bulk compositions, (3) some phenocrysts preserve records of multiple interactions with basaltic magmas requiring magmatic processes to operate on time-scales shorter than residence times of some phenocrysts, (4) multiple occurrences of clinopyroxene with high-Cr rims suggest that basalt replenishment events have occurred with sub-decadal frequency and may predate eruption by months or less. From this we infer that Arenal volcano is underlain by a continuously active, small-volume magmatic reservoir maintained in quasi-steady state by basalt recharge over several decades. The monotony of erupting Arenal magmas implies that fractionation, recharge, ascent, and eruption are well balanced in order for magmas to be essentially uniform while containing phenocrysts with vastly different growth histories at the time of eruption.
Resumo:
The Public Health Agency is advising that the plume of volcanic ash over the north Atlantic is not currently a risk to public health in Northern Ireland. The previous eruption of the Eyjafjallajokull Icelandic volcano in April 2010 had no impact on public health in the UK and a study of respiratory and related symptoms reported to GPs in the UK in 2010 showed no unusual increases during the period in which the volcanic dust from Iceland was present in the atmosphere.In view of the present dynamic weather conditions across the UK the PHA is liaising closely with health protection colleagues in England, Scotland, Wales and the Met Office in relation to the latest available scientific information on the volcanic ash.For more information visit www.hpa.org.uk
Resumo:
The origin of andesite is an important issue in petrology because andesite is the main eruptive product at convergent margins, corresponds to the average crustal composition and is often associated with major Cu-Au mineralization. In this study we present petrographic, mineralogical, geochemical and isotopic data for basaltic andesites of the latest Pleistocene Pilavo volcano, one of the most frontal volcanoes of the Ecuadorian Quaternary arc, situated upon thick (30-50 km) mafic crust composed of accreted Cretaceous oceanic plateau rocks and overlying mafic to intermediate Late Cretaceous-Late Tertiary magmatic arcs. The Pilavo rocks are basaltic andesites (54-57 center dot 5 wt % SiO(2)) with a tholeiitic affinity as opposed to the typical calc-alkaline high-silica andesites and dacites (SiO(2) 59-66 wt %) of other frontal arc volcanoes of Ecuador (e.g. Pichincha, Pululahua). They have much higher incompatible element contents (e.g. Sr 650-1350 ppm, Ba 650-1800 ppm, Zr 100-225 ppm, Th 5-25 ppm, La 15-65 ppm) and Th/La ratios (0 center dot 28-0 center dot 36) than Pichincha and Pululahua, and more primitive Sr ((87)Sr/(86)Sr similar to 0 center dot 7038-0 center dot 7039) and Nd (epsilon(Nd) similar to +5 center dot 5 to +6 center dot 1) isotopic signatures. Pilavo andesites have geochemical affinities with modern and recent high-MgO andesites (e.g. low-silica adakites, Setouchi sanukites) and, especially, with Archean sanukitoids, for both of which incompatible element enrichments are believed to result from interactions of slab melts with peridotitic mantle. Petrographic, mineral chemistry, bulk-rock geochemical and isotopic data indicate that the Pilavo magmatic rocks have evolved through three main stages: (1) generation of a basaltic magma in the mantle wedge region by flux melting induced by slab-derived fluids (aqueous, supercritical or melts); (2) high-pressure differentiation of the basaltic melt (at the mantle-crust boundary or at lower crustal levels) through sustained fractionation of olivine and clinopyroxene, leading to hydrous, high-alumina basaltic andesite melts with a tholeiitic affinity, enriched in incompatible elements and strongly impoverished in Ni and Cr; (3) establishment of one or more mid-crustal magma storage reservoirs in which the magmas evolved through dominant amphibole and clinopyroxene (but no plagioclase) fractionation accompanied by assimilation of the modified plutonic roots of the arc and recharge by incoming batches of more primitive magma from depth. The latter process has resulted in strongly increasing incompatible element concentrations in the Pilavo basaltic andesites, coupled with slightly increasing crustal isotopic signatures and a shift towards a more calc-alkaline affinity. Our data show that, although ultimately originating from the slab, incompatible element abundances in arc andesites with primitive isotopic signatures can be significantly enhanced by intra-crustal processes within a thick juvenile mafic crust, thus providing an additional process for the generation of enriched andesites.
Resumo:
In a climate of growing concern that Plasmodium falciparum may be developing a drug resistance to artemisinin derivatives in the Guiana Shield, this review details our current knowledge of malaria and control strategy in one part of the Shield, French Guiana. Local epidemiology, test-treat-track strategy, the state of parasite drug resistance and vector control measures are summarised. Current issues in terms of mobile populations and legislative limitations are also discussed.
Resumo:
The structure of the shield of curly overhairs was studied in 22 genera of shrews, using scanning electron microscopy. The cross section of the shield is quadriconcave with two sides showing particular scale patterns or a relief which can be grouped into 4 morphological types: 1) a smooth type with, at most, shallow U-shaped notches; 2) a type with uniserial, V-shaped tiled notches; 3) a type with a groove and irregular notches; 4) a type with a deep ridged groove. Myosorex, which occupies a basal phyletic position, shows type 3. This type is therefore interpreted as an ancestral character state. It is found also in Feroculus and in some Sylvisorex. In the Crocidurinae, this type evolved into type 2 (Scutisorex and some Indomalayan Crocidura), and finally into type 1 (Suncus and most Crocidura). In the Soricinae, it evolved into type 4, which is common to all genera except Megasorex and Notiosorex. These two genera possess type 1 which is interpreted as being a synapomorphous character of these genera. The regression of the complex structure under dry climatic conditions supports the hypothesis that the function of the grooved form of hair is water repulsion.
Resumo:
Chaotic deposits are frequently reported in the geological literature and are commonly interpreted as olistostromes or tectonic melanges. A chaotic complex in the Cenozoic succession of Monferrato (NW Italy) consists of interbedded mud breccia and burrowed silty clays that are pierced by sheared mud breccias and embed carbonate-cemented blocks. These may be represented by microcrystalline limestones or strongly cemented matrix-supported breccias locally containing remains of chemosymbiotic organisms (lucinid bivalves). Moreover, cylindrical concretions, up to 15 cm in diameter and 1 m long, occur in the chaotic complex and crosscut bedding planes at high angles. The cement of all these lithified portions is mainly dolomite characterized by low delta(13)C values (from -10.3 to -23parts per thousand PDB) and delta(18)O values up to + 7parts per thousand PDB. The delta(13)C values testify to precipitation of carbonates induced by microbial oxidation of methane, whereas the markedly positive delta(18)C signature, ubiquitous in the cylindrical concretions, is the evidence for the presence and destabilization of gas hydrates. The studied section provides a well-exposed example of the geological record of the birth, life, and death of a mud volcano. Unsheared, soft mud breccias represent mud flows along the flanks of the volcano, whereas sheared mud breccias are the result of the injection of unconsolidated overpressured fine-grained sediments, both taking place during ``eruptive'' phases. They were followed by more quiet stages of hemipelagic sedimentation, burrowing, and CH4 seeping. The cylindrical concretions represent the first described ancient example of the chimneys observed in present-day mud-volcano settings. They are the remnants of a cold-seep plumbing network that crosscut the mud volcano edifice. The chimneys were the pathway for the expulsion toward the sea floor of gas- and sediment-charged fluids likely originated from destabilization of methane gas hydrates. The association of mud breccias and methane-derived carbonates may not be due to mass gravity flows but can be primary and, therefore, is a diagnostic criterion for recognizing chaotic deposits due to mud volcano activity in the geological record.