984 resultados para Shear Bond Strength


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction : La force d’adhésion à l'interface métal-céramique avec les résines auto-polymérisantes destinées au collage indirect des boîtiers orthodontiques n'a pas été évaluée à ce jour et un protocole clinique basé sur la littérature scientifique est inexistant. Objectifs : 1) Comparer la force de cisaillement maximale entre des boîtiers métalliques et des surfaces en porcelaine préparées selon différentes méthodes; 2) Suggérer un protocole clinique efficace et prévisible. Matériel et méthodes : Quatre-vingt-dix disques en leucite (6 groupes; n = 15/groupe) ont été préparés selon 6 combinaisons de traitements de surface : mécaniques (+ / - fraisage pour créer les rugosités) et chimiques (acide fluorhydrique, apprêt, silane). Des bases en résine composite Transbond XT (3M Unitek, Monrovia, California) faites sur mesure ont été collées avec le système de résine adhésive auto-polymérisante Sondhi A + B Rapid Set (3M Unitek, Monrovia, California). Les échantillons ont été préservés (H2O/24hrs), thermocyclés (500 cycles) et testés en cisaillement (Instron, Norwood, Massachusetts). Des mesures d’Index d’adhésif résiduel (IAR) ont été compilées. Des tests ANOVAs ont été réalisés sur les rangs étant donné que les données suivaient une distribution anormale et ont été ajustés selon Tukey. Un Kruskall-Wallis, U-Mann Whitney par comparaison pairée et une analyse de Weibull ont aussi été réalisés. Résultats : Les médianes des groupes varient entre 17.0 MPa (- fraisage + acide fluorhydrique) à 26.7 MPa (- fraisage + acide fluorhydrique + silane). Le fraisage en surface ne semble pas affecter l’adhésion. La combinaison chimique (- fraisage + silane + apprêt) a démontré des forces de cisaillement significativement plus élevées que le traitement avec (- fraisage + acide fluorhydrique), p<0,05, tout en possédant des forces similaires au protocole typiquement suggéré à l’acide fluorhydrique suivi d’une application de silane, l’équivalence de (- fraisage + acide fluorhydrique + silane). Les mesures d’IAR sont significativement plus basses dans le groupe (- fraisage + acide fluorhydrique) en comparaison avec celles des 5 autres groupes, avec p<0,05. Malheureusement, ces 5 groupes ont des taux de fracture élévés de 80 à 100% suite à la décimentation des boîtiers. Conclusion : Toutes les combinaisons de traitement de surface testées offrent une force d’adhésion cliniquement suffisante pour accomplir les mouvements dentaires en orthodontie. Une application de silane suivie d’un apprêt est forte intéressante, car elle est simple à appliquer cliniquement tout en permettant une excellente adhésion. Il faut cependant avertir les patients qu’il y a un risque de fracture des restorations en céramique lorsque vient le moment d’enlever les broches. Si la priorité est de diminuer le risque d’endommager la porcelaine, un mordançage seul à l’acide hydrofluorique sera suffisant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To assess in vitro the shear bond strength at the resin/dentin interface in primary teeth after contamination with fresh human blood. Methods: 75 crowns of primary molars were embedded in acrylic resin and mechanically ground to expose a flat dentin surface. The specimens were randomly assigned to five groups (n=15), according to the surface treatment. Group I (control) had no blood contamination. The other groups were blood-contaminated and subjected to different post-contamination protocols: in Group 2, the surfaces were rinsed with water; in Group 3, the surfaces were air-dried; in Group 4, the surfaces were rinsed and air-dried; and in Group 5, no post-contamination treatment was done. In all groups, a 3-mm dentin bonding site was demarcated, Single Bond adhesive system was applied and resin composite cylinders were bonded. After 24 hours in distilled water, shear bond strength was tested at a crosshead speed of 0.5 mm/minute. Results: Means (in MPa) were: Group 1: 7.1 (+/- 4.2); Group 2: 4.0 (+/- 1.8); Group 3: 0.9 (+/- 0.7); Group 4: 3.9 (+/- 2.2) and Group 5: 1.3 (+/- 1.5). Data were analyzed statistically by the Kruskal-Wallis test at 5% significance level. Groups 2 and 4 were similar to each other (P > 0.05) and both ware similar to Group 1 (P > 0.05). These groups (2, 3 and 4) had statistically significantly higher bond strengths than Groups 3 and 5 (P < 0.05). Blood contamination negatively affected the shear bond strength to primary tooth dentin. Among the blood-contaminated groups, water-rinsed specimens had higher bond strengths than those that were exclusively air-dried or not submitted to any post-contamination protocol before adhesive application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate in vitro the influence of water flow rate on shear bond strength of a resin composite to enamel and dentin after Er:YAG cavity preparation. Methods: Ten bovine incisors were selected and roots removed. Crowns were sectioned in four pieces, resulting in 40 samples that were individually embedded in polyester resin (n=10), and ground to plane the enamel and expose the dentin. The bonding site was delimited and samples were randomly assigned according to cavity preparation: (1) Er:YAG/1.0 mL/minute; (2) Er:YAG/1.5 mL/minute; (3) Er:YAG/2.0 mL/minute and (4) High speed handpiece/bur (control group). Samples were fixed to a metallic device, where composite resin cylinders were prepared. Subsequently, they were stored for 24 hours and subjected to a shear bond strength test (500N at 0.5 mm/minute). Results: Means (MPa) were: enamel: 1: 12.8; 2: 16.8; 3: 17.5; 4: 36.0 and Dentin: 1: 13.6; 2: 18.7; 3: 12.1; 4: 21.3. Data were submitted to ANOVA and Tukey`s test. Adhesion to enamel was more efficient than for dentin. The cavities prepared with conventional bur (control) presented higher statistically significant bond strength values (P<0.05) than for Er:YAG laser for both enamel and dentin. No significant differences were observed between water flow rates employed during enamel ablation. For dentin, the shear bond strength of 2.0 mL/minute water flow rate was lower than for 1.5 mL/minute and 1.0 mL/minute rates. The Er:YAG laser adversely affected shear bond strength of resin composite to both enamel and dentin, regardless of the water flow rate used.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives. This study was undertaken to evaluate the shear bond strength of four materials used as aesthetic material bonded to Ni-Cr alloy.Methods. Sixty-eight alloy discs were prepared and divided equally into four groups, and received four treatments for veneering: conventional feldspathic porcelain (Noritake EX-3) and three light-cured prosthodontic composite resins (Artglass, Solidex and Targis). The aesthetic materials were applied after metal structure conditioning in accordance with the manufacturers' recommendations. The specimens were stored in distilled water at 37 degreesC for 7 days. A universal testing machine was used to measure the shear bond strength of the specimens at a cross head speed of 0.5 mm/min. Fractured specimens were examined by using both optical and scanning electron microscope.Results. The analysis of variance and Tukey's test showed that the strongest mean shear bond was obtained with Noritake EX-3 (mean shear bond strength 42.90 +/- 7.82 MPa). For composites, the highest mean shear bond strength was observed for Targis (12.30 +/- 1.57 MPa); followed by Solidex (11.94 +/- 1.04 MPa) and Artglass (10.04 +/- 0.75 MPa). Optical analysis of the fractured surf aces indicated that for Targis and Noritake EX-3 all failures were a mixture of both cohesive and adhesive patterns. As for Artglass and Solidex, the fractures were mainly adhesive in nature.Conclusions. The Solidex system was equivalent to the Targis system in bond strength and exhibited greater strength than the Artglass system. The porcelain fused-to-metal showed considerably higher shear bond strength than the three metal-resin bonding techniques. (C) 2003 Elsevier B.V. Ltd. Ali rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statement of problem. When clinical fractures of the ceramic veneer on metal-ceramic prostheses can be repaired, the need for remake may be eliminated or postponed. Many different ceramic repair materials are available, and bond strength data are necessary for predicting the success of a given repair system.Purpose. This study evaluated the shear bond strength of different repair systems for metal-ceramic restorations applied on metal and porcelain.Material and methods. Fifty cylindrical specimens (9 X 3 mm) were fabricated in a nickel-chromium alloy (Vera Bond 11) and 50 in feldspathic porcelain (Noritakc). Metal (M) and porcelain (P) specimens were embedded in a polyvinyl chloride (PVC) ring and received I of the following bonding and resin composite repair systems (n=10): Clearfil SE Bond/Clearfil AP-X (CL), Bistite II DC/Palfique (BT), Cojet Sand/Z100 (Q), Scotchbond Multipurpose Plus/Z100 (SB) (control group), or Cojet Sand plus Scotchbond Multipurpose Plus/Z100 (CJSB). The specimens were stored in distilled water for 24 hours at 37 degrees C, thermal cycled (1000 cycles at 5 degrees C to 55 degrees C), and stored at 37 degrees C for 8 days. Shear bond tests between the metal or ceramic specimens and repair systems were performed in a mechanical testing machine with a crosshead speed of 0.5 mm/min. Mean shear bond strength values (MPa) were submitted to 1-way ANOVA and Tukey honestly significant difference tests (alpha=.05). Each specimen was examined under a stereoscopic lens with X 30 magnification, and mode of failure was classified as adhesive, cohesive, or a combination.Results. on metal, the mean shear bond strength values for the groups were as follows: MCL, 18.40 +/- 2.88(b); MBT, 8.57 +/- 1.00(d); MCJ, 25.24 +/- 3.46(a); MSB, 16.26 +/- 3.09(bc); and MCJSB, 13.11 +/- 1.24(c). on porcelain, the mean shear bond strength values ofeach group were as follows: PCL, 16.91 +/- 2.22(b); PBT, 18.04 +/- 3.2(ab); PCJ, 19.54 +/- 3.77(ab); PSB, 21.05 +/- 3.22(a); and PCJSB, 16.18 +/- 1.71(b). Within each substrate, identical superscript letters denote no significant differences among groups.Conclusions. The bond strength for the metal substrate was significantly higher using the Q system. For porcelain, SB, Q, and BT systems showed the highest shear bond strength values, and only SB was significantly different compared to CL and CJSB (P <.05).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the shear bond strength (SBS) and stability of commercially pure titanium (CP Ti)/repair material interfaces promoted by different repair systems. One hundred CP Ti cast discs were divided into five repair system groups: 1) Epricord (EP); 2) Bistite 11 DC (BT); 3) Cojet (CJ); 4) Scotchbond Multi-Purpose Plus (SB) (control group); and 5) Cojet Sand plus Scotchbond Multi-Purpose Plus (CJSB). The specimens were stored in distilled water for 24 hours at 37 degrees C, thermal cycled (5000 cycles, 5 degrees-55 degrees C) and stored under the same conditions for either 24 hours or six months (n=10). SBS was tested and the data were analyzed by two-way analysis of variance (ANOVA) and Tukey test (alpha=.05). Failure mode was determined with a stereomicroscope (20x). The repair system, storage time, and their interaction significantly affected the SBS (p<0.001). At 24 hours, CJSB exhibited the highest SBS value, followed by CJ. At six months, these two groups had similar mean SBS (p>0.05) and higher means in comparison to the other groups. For both storage times, BT presented the lowest SBS, while the EP and SB groups did not differ significantly from one another (p>0.05). There were no significant differences in SBS between the storage times for the groups EP and CJ (p>0.05). The groups BT, SB, and CJSB showed 100% adhesive failure, irrespective of storage time. The CJSB group showed the highest SBS at both storage times. At six months, the CJ group exhibited a similar SBS mean value when compared to the CJSB group. Water storage adversely affected the groups BT, SB (control group), and CJSB. Considering SBS values, stability, and the failure mode simultaneously, the CJ group showed the best CP Ti repair performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statement of problem. Although titanium presents attractive physical and mechanical properties, there is a need for improving the bond at the titanium/luting cement interface for the longevity of metal ceramic restorations.Purpose. The purpose of this study was to evaluate the effect of surface treatments on the shear bond strength (SBS) of resin-modified glass ionomer and resin cements to commercially pure titanium (CP Ti).Material and methods. Two hundred and forty CP Ti cast disks (9.0 x 3.0 mm) were divided into 8 surface treatment groups (n=30): 1) 50 mu m Al2O3 particles; 2) 120 mu m Al2O3 particles; 3) 250 mu m Al2O3 particles; 4) 50 mu m Al2O3 particles + silane (RelyX Ceramic Primer); 5) 120 mu m Al2O3 particles + silane; 6) 250 mu m Al2O3 particles + silane; 7) 30 mu m silica-modified Al2O3 particles (Cojet Sand) + silane; and 8) 120 mu m Al2O3 particles, followed by 110 mu m silica-modified Al2O3 particles (Rocatec). The luting cements 1) RelyX Luting 2; 2) RelyX ARC; or 3) RelyX U100 were applied to the treated CP Ti surfaces (n=10). Shear bond strength (SBS) was tested after thermal cycling (5000 cycles, 5 degrees C to 55 degrees C). Data were analyzed by 2-way analysis of variance (ANOVA) and the Tukey HSD post hoc test (alpha=.05). Failure mode was determined with a stereomicroscope (x20).Results. The surface treatments, cements, and their interaction significantly affected the SBS (P<.001). RelyX Luting 2 and RelyX U100 exhibited similar behavior for all surface treatments. For both cements, only the group abraded with 50 mu m Al2O3 particles had lower SBS than the other groups (P<.05). For RelyX ARC, regardless of silane application, abrasion with 50 mu m Al2O3 particles resulted in significantly lower SBS than abrasion with 120 mu m and 250 mu m particles, which exhibited statistically similar SBS values to each other. Rocatec + silane promoted the highest SBS for RelyX ARC. RelyX U100 presented the highest SBS mean values (P<.001). All groups showed a predominance of adhesive failure mode.Conclusions. The adhesive capability of RelyX Luting 2 and RelyX U100 on the SBS was decisive, while for RelyX ARC, mechanical and chemical factors were more influential. (J Prosthet Dent 2012;108:370-376)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the shear bond strength of repairs in porcelain conditioned with laser. Sixty porcelain discs were made and six groups were formed (n = 10): G1: conditioning with laser with potency 760 mW; G2: conditioning with laser with potency 760 mW and application of 37% phosphoric acid for 15 s; G3: conditioning with laser with potency 900 mW; G4: conditioning with laser with potency 900 mW and application of 37% phosphoric acid for 15 s; G5: application of 37% phosphoric acid for 15 s (group control) and G6: application of 10% hydrofluoric acid for 2 min. The composite resin was insert of incremental layers at the porcelain surface aided with a metal matrix, and photoactivation for 20 s each increment. The specimens were submitted to a thermal cycling by 1000 cycles of 30 s in each bath with temperature between 5 and 55 degrees C. After the thermal cycling, specimens were submitted to the shear bond strength. The results were evaluated statistically through analysis of variance and Tukey's tests with 5% significance. The averages and standard deviation founded were: G1, 11.25 (+/- 3.10); G2, 12.32 (+/- 2.65); G3, 14.02 (+/- 2.38); G4, 13.44 (+/- 2,07); G5, 9.91 (-/+ 2,18); G6, 12.74 (+/- 2.67). The results showed that the femtosecond laser produced a shear bond strength of repairs in porcelain equal to the hydrofluoric acid and significantly superior to the use of phosphoric acid. Microsc. Res. Tech., 2012. (C) 2012 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The purpose of this study was to evaluate, by shear bond strength (SBS) testing, the influence of different types of temporary cements on the final cementation using conventional and self-etching resin-based luting cements. Material and Methods: Forty human teeth divided in two halves were assigned to 8 groups (n=10): I and V (no temporary cementation); II and VI: Ca(OH)(2)-based cement; III and VII: zinc oxide (ZO)based cement; IV and VIII: ZO-eugenol (ZOE)-based cement. Final cementation was done with RelyX ARC cement (groups I to IV) and RelyX Unicem cement (groups V to VIII). Data were analyzed statistically by ANOVA and Tukey's test at 5% significance level. Results: Means were (MPa): I - 3.80 (+/- 1.481); II - 5.24 (+/- 2.297); III - 6.98 (+/- 1.885); IV - 6.54 (+/- 1.459); V - 5.22 (+/- 2.465); VI - 4.48 (+/- 1.705); VII - 6.29 (+/- 2.280); VIII - 2.47 (+/- 2.076). Comparison of the groups that had the same temporary cementation (Groups II and VI; III and VII; IV and VIII) showed statistically significant difference (p<0.001) only between Groups IV and VIII, in which ZOE-based cements were used. The use of either Ca(OH) 2 based (Groups II and VI) or ZO-based (Groups III and VII) cements showed no statistically significant difference (p>0.05) for the different luting cements (RelyX (TM) ARC and RelyX (TM) Unicem). The groups that had no temporary cementation (Groups I and V) did not differ significantly from each other either (p>0.05). Conclusion: When temporary cementation was done with ZO- or ZOE-based cements and final cementation was done with RelyX ARC, there was an increase in the SBS compared to the control. In the groups cemented with RelyX Unicem, however, the use of a ZOE-based temporary cement affected negatively the SBS of the luting agent used for final cementation.