981 resultados para Shape Modelling
Resumo:
We would like to thank the study participants and the clinical and research staff at the Queen Elizabeth National Spinal Injury Unit, as without them this study would not have been possible. We are grateful for the funding received from Glasgow Research Partnership in Engineering for the employment of SC during data collection for this study. We would like to thank the Royal Society of Edinburgh's Scottish Crucible scheme for providing the opportunity for this collaboration to occur. We are also indebted to Maria Dumitrascuta for her time and effort in producing inter-repeatability results for the shape models.
Resumo:
We would like to thank the study participants and the clinical and research staff at the Queen Elizabeth National Spinal Injury Unit, as without them this study would not have been possible. We are grateful for the funding received from Glasgow Research Partnership in Engineering for the employment of SC during data collection for this study. We would like to thank the Royal Society of Edinburgh's Scottish Crucible scheme for providing the opportunity for this collaboration to occur. We are also indebted to Maria Dumitrascuta for her time and effort in producing inter-repeatability results for the shape models.
Resumo:
Shape-based registration methods frequently encounters in the domains of computer vision, image processing and medical imaging. The registration problem is to find an optimal transformation/mapping between sets of rigid or nonrigid objects and to automatically solve for correspondences. In this paper we present a comparison of two different probabilistic methods, the entropy and the growing neural gas network (GNG), as general feature-based registration algorithms. Using entropy shape modelling is performed by connecting the point sets with the highest probability of curvature information, while with GNG the points sets are connected using nearest-neighbour relationships derived from competitive hebbian learning. In order to compare performances we use different levels of shape deformation starting with a simple shape 2D MRI brain ventricles and moving to more complicated shapes like hands. Results both quantitatively and qualitatively are given for both sets.
Resumo:
Contém resumo
Resumo:
Growing models have been widely used for clustering or topology learning. Traditionally these models work on stationary environments, grow incrementally and adapt their nodes to a given distribution based on global parameters. In this paper, we present an enhanced unsupervised self-organising network for the modelling of visual objects. We first develop a framework for building non-rigid shapes using the growth mechanism of the self-organising maps, and then we define an optimal number of nodes without overfitting or underfitting the network based on the knowledge obtained from information-theoretic considerations. We present experimental results for hands and we quantitatively evaluate the matching capabilities of the proposed method with the topographic product.
Resumo:
Adhesively-bonded joints are extensively used in several fields of engineering. Cohesive Zone Models (CZM) have been used for the strength prediction of adhesive joints, as an add-in to Finite Element (FE) analyses that allows simulation of damage growth, by consideration of energetic principles. A useful feature of CZM is that different shapes can be developed for the cohesive laws, depending on the nature of the material or interface to be simulated, allowing an accurate strength prediction. This work studies the influence of the CZM shape (triangular, exponential or trapezoidal) used to model a thin adhesive layer in single-lap adhesive joints, for an estimation of its influence on the strength prediction under different material conditions. By performing this study, guidelines are provided on the possibility to use a CZM shape that may not be the most suited for a particular adhesive, but that may be more straightforward to use/implement and have less convergence problems (e.g. triangular shaped CZM), thus attaining the solution faster. The overall results showed that joints bonded with ductile adhesives are highly influenced by the CZM shape, and that the trapezoidal shape fits best the experimental data. Moreover, the smaller is the overlap length (LO), the greater is the influence of the CZM shape. On the other hand, the influence of the CZM shape can be neglected when using brittle adhesives, without compromising too much the accuracy of the strength predictions.
Resumo:
Lava domes comprise core, carapace, and clastic talus components. They can grow endogenously by inflation of a core and/or exogenously with the extrusion of shear bounded lobes and whaleback lobes at the surface. Internal structure is paramount in determining the extent to which lava dome growth evolves stably, or conversely the propensity for collapse. The more core lava that exists within a dome, in both relative and absolute terms, the more explosive energy is available, both for large pyroclastic flows following collapse and in particular for lateral blast events following very rapid removal of lateral support to the dome. Knowledge of the location of the core lava within the dome is also relevant for hazard assessment purposes. A spreading toe, or lobe of core lava, over a talus substrate may be both relatively unstable and likely to accelerate to more violent activity during the early phases of a retrogressive collapse. Soufrière Hills Volcano, Montserrat has been erupting since 1995 and has produced numerous lava domes that have undergone repeated collapse events. We consider one continuous dome growth period, from August 2005 to May 2006 that resulted in a dome collapse event on 20th May 2006. The collapse event lasted 3 h, removing the whole dome plus dome remnants from a previous growth period in an unusually violent and rapid collapse event. We use an axisymmetrical computational Finite Element Method model for the growth and evolution of a lava dome. Our model comprises evolving core, carapace and talus components based on axisymmetrical endogenous dome growth, which permits us to model the interface between talus and core. Despite explicitly only modelling axisymmetrical endogenous dome growth our core–talus model simulates many of the observed growth characteristics of the 2005–2006 SHV lava dome well. Further, it is possible for our simulations to replicate large-scale exogenous characteristics when a considerable volume of talus has accumulated around the lower flanks of the dome. Model results suggest that dome core can override talus within a growing dome, potentially generating a region of significant weakness and a potential locus for collapse initiation.
Resumo:
We present some additions to a fuzzy variable radius niche technique called Dynamic Niche Clustering (DNC) (Gan and Warwick, 1999; 2000; 2001) that enable the identification and creation of niches of arbitrary shape through a mechanism called Niche Linkage. We show that by using this mechanism it is possible to attain better feature extraction from the underlying population.
Resumo:
This paper presents a three dimensional, thermos-mechanical modelling approach to the cooling and solidification phases associated with the shape casting of metals ei. Die, sand and investment casting. Novel vortex-based Finite Volume (FV) methods are described and employed with regard to the small strain, non-linear Computational Solid Mechanics (CSM) capabilities required to model shape casting. The CSM capabilities include the non-linear material phenomena of creep and thermo-elasto-visco-plasticity at high temperatures and thermo-elasto-visco-plasticity at low temperatures and also multi body deformable contact with which can occur between the metal casting of the mould. The vortex-based FV methods, which can be readily applied to unstructured meshes, are included within a comprehensive FV modelling framework, PHYSICA. The additional heat transfer, by conduction and convection, filling, porosity and solidification algorithms existing within PHYSICA for the complete modelling of all shape casting process employ cell-centred FV methods. The termo-mechanical coupling is performed in a staggered incremental fashion, which addresses the possible gap formation between the component and the mould, and is ultimately validated against a variety of shape casting benchmarks.
Resumo:
Abstract not available
Resumo:
Children fromdevelopedanddevelopingcountriesdifferintheirbodysizeandshapedueto markeddifferencesacrosstheirlifehistorycausedbysocial,economicandculturaldifferenceswhicharealsolinkedtotheirmotorperformance(MP).Weusedallometricmodelsto identifysize/shapecharacteristicsassociatedwithMPtestsbetweenBrazilianandPeruvianschoolchildren.Atotalof4,560subjects,2,385girlsand2,175boysaged9–15years werestudied.Heightandweightweremeasured;biological maturation wasestimated with thematurityoffsettechnique;MPmeasuresincludedthe12minuterun(12MR),handgrip strength(HG),standinglongjump(SLJ)andtheshuttlerunspeed(SR)tests;physicalactivity(PA)wasassessedusingtheBaeckequestionnaire.Amultiplicativeallometricmodel wasadoptedtoadjustforbodysizedifferencesacrosscountries.Reciprocalponderalindex (RPI)wasfoundtobethemostsuitablebodyshapeindicatorassociatedwiththe12MR, SLJ,HGandSRperformance.Apositivematurationoffset parameterwasalsoassociated withabetterperformanceinSLJ,HGandSRtests.Sexdifferenceswerefoundinallmotor tests.BrazilianyouthshowedbetterscoresinMPthantheirPeruvianpeers,evenwhen controlling fortheirbodysizedifferencesThecurrentstudyidentifiedthekeybodysize associatedwithfourbodymass-dependentMPtests.Biological maturationandPAwere associatedwithstrengthandmotorperformance.Sexdifferenceswerefoundinallmotor tests,aswellasacrosscountriesfavoringBrazilianchildrenevenwhenaccountingfortheir bodysize/shapedifferences.
Resumo:
Children fromdevelopedanddevelopingcountriesdifferintheirbodysizeandshapedueto markeddifferencesacrosstheirlifehistorycausedbysocial,economicandculturaldifferenceswhicharealsolinkedtotheirmotorperformance(MP).Weusedallometricmodelsto identifysize/shapecharacteristicsassociatedwithMPtestsbetweenBrazilianandPeruvianschoolchildren.Atotalof4,560subjects,2,385girlsand2,175boysaged9–15years werestudied.Heightandweightweremeasured;biological maturation wasestimated with thematurityoffsettechnique;MPmeasuresincludedthe12minuterun(12MR),handgrip strength(HG),standinglongjump(SLJ)andtheshuttlerunspeed(SR)tests;physicalactivity(PA)wasassessedusingtheBaeckequestionnaire.Amultiplicativeallometricmodel wasadoptedtoadjustforbodysizedifferencesacrosscountries.Reciprocalponderalindex (RPI)wasfoundtobethemostsuitablebodyshapeindicatorassociatedwiththe12MR, SLJ,HGandSRperformance.Apositivematurationoffset parameterwasalsoassociated withabetterperformanceinSLJ,HGandSRtests.Sexdifferenceswerefoundinallmotor tests.BrazilianyouthshowedbetterscoresinMPthantheirPeruvianpeers,evenwhen controlling fortheirbodysizedifferencesThecurrentstudyidentifiedthekeybodysize associatedwithfourbodymass-dependentMPtests.Biological maturationandPAwere associatedwithstrengthandmotorperformance.Sexdifferenceswerefoundinallmotor tests,aswellasacrosscountriesfavoringBrazilianchildrenevenwhenaccountingfortheir bodysize/shapedifferences.