983 resultados para Series solutions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the past, high order series expansion techniques have been used to study the nonlinear equations that govern the form of periodic Stokes waves moving steadily on the surface of an inviscid fluid. In the present study, two such series solutions are recomputed using exact arithmetic, eliminating any loss of accuracy due to accumulation of round-off error, allowing a much greater number of terms to be found with confidence. It is shown that higher order behaviour of series generated by the solution casts doubt over arguments that rely on estimating the series’ radius of convergence. Further, the exact nature of the series is used to shed light on the unusual nature of convergence of higher order Pade approximants near the highest wave. Finally, it is concluded that, provided exact values are used in the series, these Pade approximants prove very effective in successfully predicting three turning points in both the dispersion relation and the total energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exact solutions of partial differential equation models describing the transport and decay of single and coupled multispecies problems can provide insight into the fate and transport of solutes in saturated aquifers. Most previous analytical solutions are based on integral transform techniques, meaning that the initial condition is restricted in the sense that the choice of initial condition has an important impact on whether or not the inverse transform can be calculated exactly. In this work we describe and implement a technique that produces exact solutions for single and multispecies reactive transport problems with more general, smooth initial conditions. We achieve this by using a different method to invert a Laplace transform which produces a power series solution. To demonstrate the utility of this technique, we apply it to two example problems with initial conditions that cannot be solved exactly using traditional transform techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 1D electric field and heat-conduction equations are solved for a slab where the dielectric properties vary spatially in the sample. Series solutions to the electric field are obtained for systems where the spatial variation in the dielectric properties can be expressed as polynomials. The series solution is used to obtain electric-field distributions for a binary oil-water system where the dielectric properties are assumed to vary linearly within the sample. Using the finite-element method temperature distributions are computed in a three-phase oil, water and rock system where the dielectric properties vary due to the changing oil saturation in the rock. Temperature distributions predicted using a linear variation in the dielectric properties are compared with those obtained using the exact nonlinear variation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Approximate closed-form solutions of the non-linear relative equations of motion of an interceptor pursuing a target under the realistic true proportional navigation (RTPN) guidance law are derived using the Adomian decomposition method in this article. In the literature, no study has been reported on derivation of explicit time-series solutions in closed form of the nonlinear dynamic engagement equations under the RTPN guidance. The Adomian method provides an analytical approximation, requiring no linearization or direct integration of the non-linear terms. The complete derivation of the Adomian polynomials for the analysis of the dynamics of engagement under RTPN guidance is presented for deterministic ideal case, and non-ideal dynamics in the loop that comprises autopilot and actuator dynamics and target manoeuvre, as well as, for a stochastic case. Numerical results illustrate the applicability of the method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, an exact series solution for the vibration analysis of circular cylindrical shells with arbitrary boundary conditions is obtained, using the elastic equations based on Flügge's theory. Each of the three displacements is represented by a Fourier series and auxiliary functions and sought in a strong form by letting the solution exactly satisfy both the governing differential equations and the boundary conditions on a point-wise basis. Since the series solution has to be truncated for numerical implementation, the term exactly satisfying should be understood as a satisfaction with arbitrary precision. One of the important advantages of this approach is that it can be universally applied to shells with a variety of different boundary conditions, without the need of making any corresponding modifications to the solution algorithms and implementation procedures as typically required in other techniques. Furthermore, the current method can be easily used to deal with more complicated boundary conditions such as point supports, partial supports, and non-uniform elastic restraints. Numerical examples are presented regarding the modal parameters of shells with various boundary conditions. The capacity and reliability of this solution method are demonstrated through these examples. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three recent papers published in Chemical Engineering Journal studied the solution of a model of diffusion and nonlinear reaction using three different methods. Two of these studies obtained series solutions using specialized mathematical methods, known as the Adomian decomposition method and the homotopy analysis method. Subsequently it was shown that the solution of the same particular model could be written in terms of a transcendental function called Gauss’ hypergeometric function. These three previous approaches focused on one particular reactive transport model. This particular model ignored advective transport and considered one specific reaction term only. Here we generalize these previous approaches and develop an exact analytical solution for a general class of steady state reactive transport models that incorporate (i) combined advective and diffusive transport, and (ii) any sufficiently differentiable reaction term R(C). The new solution is a convergent Maclaurin series. The Maclaurin series solution can be derived without any specialized mathematical methods nor does it necessarily involve the computation of any transcendental function. Applying the Maclaurin series solution to certain case studies shows that the previously published solutions are particular cases of the more general solution outlined here. We also demonstrate the accuracy of the Maclaurin series solution by comparing with numerical solutions for particular cases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A considerable amount of work has been dedicated on the development of analytical solutions for flow of chemical contaminants through soils. Most of the analytical solutions for complex transport problems are closed-form series solutions. The convergence of these solutions depends on the eigen values obtained from a corresponding transcendental equation. Thus, the difficulty in obtaining exact solutions from analytical models encourages the use of numerical solutions for the parameter estimation even though, the later models are computationally expensive. In this paper a combination of two swarm intelligence based algorithms are used for accurate estimation of design transport parameters from the closed-form analytical solutions. Estimation of eigen values from a transcendental equation is treated as a multimodal discontinuous function optimization problem. The eigen values are estimated using an algorithm derived based on glowworm swarm strategy. Parameter estimation of the inverse problem is handled using standard PSO algorithm. Integration of these two algorithms enables an accurate estimation of design parameters using closed-form analytical solutions. The present solver is applied to a real world inverse problem in environmental engineering. The inverse model based on swarm intelligence techniques is validated and the accuracy in parameter estimation is shown. The proposed solver quickly estimates the design parameters with a great precision.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pulsatile flow of an incompressible viscous fluid in an elliptical pipe of slowly varying cross-section is considered. Asymptotic series solutions for the velocity distribution and pressure gradient are obtained in terms of Mathieu functions for a low Reynold number flow in which the volume flux is prescribed. An expression for shear stress on the boundary is derived. The physically significant quantities governing the flow are computed numerically and analysed for different types of constrictions. The effect of eccentricity and Womerslay parameter on the flow is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The singularity structure of the solutions of a general third-order system, with polynomial right-hand sides of degree less than or equal to two, is studied about a movable singular point, An algorithm for transforming the given third-order system to a third-order Briot-Bouquet system is presented, The dominant behavior of a solution of the given system near a movable singularity is used to construct a transformation that changes the given system directly to a third-order Briot-Bouquet system. The results of Horn for the third-order Briot-Bouquet system are exploited to give the complete form of the series solutions of the given third-order system; convergence of these series in a deleted neighborhood of the singularity is ensured, This algorithm is used to study the singularity structure of the solutions of the Lorenz system, the Rikitake system, the three-wave interaction problem, the Rabinovich system, the Lotka-Volterra system, and the May-Leonard system for different sets of parameter values. The proposed approach goes far beyond the ARS algorithm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper investigates the errors of the solutions as well as the shadowing property of a class of nonlinear differential equations which possess unique solutions on a certain interval for any admissible initial condition. The class of differential equations is assumed to be approximated by well-posed truncated Taylor series expansions up to a certain order obtained about certain, in general nonperiodic, sampling points t(i) is an element of [t(0), t(J)] for i = 0, 1, . . . , J of the solution. Two examples are provided.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The capacity of goethite for Cd-II substitution has been explored in a series of synthetic samples prepared from Fe-III and Cd-II nitrate solutions aged 21 days in alkaline media. The total metal content ([ Fe] + [ Cd]) was 0.071 M in all preparations. The samples have been characterized by chemical and X-ray diffraction analysis; the morphology of the solids is described. The cell parameters for all samples were obtained by the Rietveld fits to the X-ray diffraction data. Refined structures show that for samples prepared at the final molar ratio mu(Cd)less than or equal to5.50 (expressed as mu(Cd) = 100X[Cd]/[Cd] + [Fe]), a (Cd, Fe)-goethite is the only crystalline product. In these samples, the unit cell parameters increased as a function of Cd concentration, indicating Cd incorporation in the structural frame. At the preparative ratio, mu(Cd)=7.03, the incorporation of Cd in the goethite structure is drastically reduced and a probable Cd-substituted hematite is formed together with the Fe,Cd-goethite. (C) 2003 International Centre for Diffraction Data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Federal Highway Administration, Office of Highway Policy Information, Washington, D.C.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, the partial molar volumes of glycine, l-alanine, l-valine, l-serine, and l-threonine in aqueous solutions of magnesium chloride at 0.0, 0.1, 0.3, 0.7, and 1.0 molal are addressed between 278.15 and 308.15 K. Volumes of transfer were obtained, following the rank serine > glycine a parts per thousand threonine > alanine > valine. Differently, the hydration numbers follow the sequence serine > valine > alanine > threonine > glycine, and dehydration of the amino acids is observed, rising the temperature or salt molality. The data suggest that interactions are mainly pairwise, between the ions and charged/hydrophilic groups of the amino acids. Within the Friedman and Krishnan formalism, a group-contribution scheme has been successfully applied to the pairwise volumetric interaction coefficient. Finally, the dehydration effect of MgCl2 on glycine, alanine, and serine has been predicted applying empirical correlations developed before, showing satisfactory results.