986 resultados para Sequential extraction procedure
Resumo:
Food lipid major components are usually analyzed by individual methodologies using diverse extractive procedures for each class. A simple and fast extractive procedure was devised for the sequential analysis of vitamin E, cholesterol, fatty acids, and total fat estimation in seafood, reducing analyses time and organic solvent consumption. Several liquid/liquid-based extractive methodologies using chlorinated and non-chlorinated organic solvents were tested. The extract obtained is used for vitamin E quantification (normal-phase HPLC with fluorescence detection), total cholesterol (normal-phase HPLC with UV detection), fatty acid profile, and total fat estimation (GC-FID), all accomplished in <40 min. The final methodology presents an adequate linearity range and sensitivity for tocopherol and cholesterol, with intra- and inter-day precisions (RSD) from 3 to 11 % for all the components. The developed methodology was applied to diverse seafood samples with positive outcomes, making it a very attractive technique for routine analyses in standard equipped laboratories in the food quality control field.
Resumo:
A comprehensive sequential extraction procedure was applied to isolate soil organic components using aqueous solvents at different pH values, base plus urea (base-urea), and finally dimethylsulfoxide (DMSO) plus concentrated H2SO4 (DMSO-acid) for the humin-enriched clay separates. The extracts from base-urea and DMSO-acid would be regarded as 'humin' in the classical definitions. The fractions isolated from aqueous base, base-urea and DMSO-acid were characterized by solid and solution state NMR spectroscopy. The base-urea solvent system isolated ca. 10% (by mass) additional humic substances. The combined base-urea and DMSO-acid solvents isolated ca. 93% of total organic carbon from the humin-enriched fine clay fraction (<2 ?m). Characterization of the humic fractions by solid-state NMR spectroscopy showed that oxidized char materials were concentrated in humic acids isolated at pH 7, and in the base-urea extract. Lignin-derived materials were in considerable abundance in the humic acids isolated at pH 12.6. Only very small amounts of char-derived structures were contained in the fulvic acids and fulvic acids-like material isolated from the base-urea solvent. After extraction with base-urea, the 0.5 m NaOH extract from the humin-enriched clay was predominantly composed of aliphatic hydrocarbon groups, and with lesser amounts of aromatic carbon (probably including some char material), and carbohydrates and peptides. From the combination of solid and solution-state NMR spectroscopy, it is clear that the major components of humin materials, from the DMSO-acid solvent, after the exhaustive extraction sequence, were composed of microbial and plant derived components, mainly long-chain aliphatic species (including fatty acids/ester, waxes, lipids and cuticular material), carbohydrate, peptides/proteins, lignin derivatives, lipoprotein and peptidoglycan (major structural components in bacteria cell walls). Black carbon or char materials were enriched in humic acids isolated at pH 7 and humic acids-like material isolated in the base-urea medium, indicating that urea can liberate char-derived material hydrogen bonded or trapped within the humin matrix.
Resumo:
This paper describes a simple method for mercury speciation in seafood samples by LC-ICP-MS with a fast sample preparation procedure. Prior to analysis, mercury species were extracted from food samples with a solution containing mercaptoethanol, L-cysteine and HCl and sonication for 15 min. Separation of mercury species was accomplished in less than 5 min on a C8 reverse phase column with a mobile phase containing 0.05%-v/v mercaptoethanol, 0.4% m/v L-cysteine and 0.06 mol L(-1) ammonium acetate. The method detection limits were found to be 0.25, 0.20 and 0.1 ng g(-1) for inorganic mercury, ethylmercury and methylmercury, respectively. Method accuracy is traceable to Certified Reference Materials (DOLT-3 and DORM-3) from the National Research Council Canada (NRCC). With the proposed method there is a considerable reduction of the time of sample preparation. Finally, the method was applied for the speciation of mercury in seafood samples purchased from the Brazilian market. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In general, Latosols have low levels of available P, however, the influence of the parent material seems to be decisive in defining the pool and predominant form of P in these soils. This study evaluated P availability by extraction with Mehlich-1 (M-1) and Ion Exchange Resin (IER), from samples of B horizons of Ferric and Perferric Latosols developed from different parent materials. To this end, in addition to the physical and chemical characterization of soils, 10 sequential extractions were performed with M-1 and IER from samples of B horizons (depth between 0.8 and 1.0 m). Total contents of Ca, P, Fe, Al, and Ti were determined after digestion with nitric, hydrofluoric and perchloric acids. The effects of sequential P extractions on Fe oxides were also evaluated from the analyses of dithionite-citrate-bicarbonate and ammonium acid oxalate. The high similarity between contents of P accumulated after sequential extractions with M-1 and IER in soils developed on tuffite indicated a predominance of P-Ca. Higher contents of P after a single IER extraction show greater efficiency in P removal from highly weathered soils, as from the Latosols studied here. The P contents also show the high sensitivity of extractant M-1 in highly buffered soils. Furthermore, a single extraction with extractant M-1 or IER is not sufficient to estimate the amount of labile P in these soils.
Resumo:
This investigation examines metal release from freshwater sediment using sequential extraction and single-step cold-acid leaching. The concentrations of Cd, Cr, Cu, Fe, Ni, Pb and Zn released using a standard 3-step sequential extraction (Rauret et al., 1999) are compared to those released using a 0.5 M HCl; leach. The results show that the three sediments behave in very different ways when subject to the same leaching experiments: the cold-acid extraction appears to remove higher relative concentrations of metals from the iron-rich sediment than from the other two sediments. Cold-acid extraction appears to be more effective at removing metals from sediments with crystalline iron oxides than the "reducible" step of the sequential extraction. The results show that a single-step acid leach can be just as effective as sequential extractions at removing metals from sediment and are a great deal less time-consuming.
Resumo:
A method for the simultaneous quantification of lycopene, beta-carotene, retinol and alpha-tocopherol by high-performance liquid chromatography (HPLC) with Vis/fluorescence detection with isocratic elution was optimized and validated. The method consists of a rapid and simple liquid-liquid extraction procedure and a posterior quantification of extracted supernatants by HPLC. Aliquots of plasma were stored at -20 degrees C for three months for stability study. The methodology was applied to samples from painters and individuals not exposed to paints (n = 75). The assay was linear for all vitamins (r > 0.99). Intra-and inter-run precisions were obtained with coefficient of variation smaller than 5%. The accuracies ranged from 0.29 to -5.80% and recoveries between 92.73 and 101.97%. Plasma samples and extracted supernatants were stable for 60 days at -20 degrees C. A significant decrease of lycopene, beta-carotene and retinol concentrations in plasma from exposed individuals compared to non-exposed individuals (p < 0.05) was observed. The method is simple, reproducible, precise, accurate and sensitive, and can be routinely utilized in clinical laboratories.
Resumo:
The continued growth of large cities is producing increasing volumes of urban sewage sludge. Disposing of this waste without damaging the environment requires careful management. The application of large quantities of biosolids (treated sewage sludge) to agricultural lands for many years may result in the excessive accumulation of nutrients like phosphorus (P) and thereby raise risks of eutrophication in nearby water bodies. We evaluated the fractionation of P in samples of an Oxisol collected as part of a field experiment in which biosolids were added at three rates to a maize (Zea mays L) plantation over four consecutive years. The biosolids treatments were equivalent to one, two and four times the recommended N rate for maize crops. In a fourth treatment, mineral fertilizer was applied at the rate recommended for maize. Inorganic P forms were extracted with ammonium chloride to remove soluble and loosely bound P; P bound to aluminum oxide (P-Al) was extracted with ammonium fluoride; P bound to iron oxide (P-Fe) was extracted with sodium hydroxide; and P bound to calcium (P-Ca) was extracted with sulfuric acid. Organic P was calculated as the difference between total P and inorganic P. The predominant fraction of P was P-Fe, followed by P-Al and P-Ca. P fractions were positively correlated to the amounts of P applied, except for P-Ca. The low values of P-Ca were due to the advanced weathering processes to which the Oxisol have been subjected, under which forms of P-Ca are converted to P-Fe and P-Al. The fertilization with P via biosolids increased P availability for maize plants even when a large portion of P was converted to more stable forms. Phosphorus content in maize leaves and grains was positively correlated with P fractions in soils. From these results it can be concluded that the application of biosolids in highly weathered tropical clayey soils for many years, even above the recommended rate based on N requirements for maize, tend to be less potentially hazardous to the environment than in less weathered sandy soils because the non-readily P fractions are predominant after the addition of biosolids. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A method for the simultaneous quantification of lycopene, β-carotene, retinol and α-tocopherol by high-performance liquid chromatography (HPLC) with Vis/fluorescence detection with isocratic elution was optimized and validated. The method consists of a rapid and simple liquid-liquid extraction procedure and a posterior quantification of extracted supernatants by HPLC. Aliquots of plasma were stored at -20°C for three months for stability study. The methodology was applied to samples from painters and individuals not exposed to paints (n = 75). The assay was linear for all vitamins (r > 0.99). Intra- and inter-run precisions were obtained with coefficient of variation smaller than 5%. The accuracies ranged from 0.29 to -5.80% and recoveries between 92.73 and 101.97%. Plasma samples and extracted supernatants were stable for 60 days at -20°C. A significant decrease of lycopene, β-carotene and retinol concentrations in plasma from exposed individuals compared to non-exposed individuals (p < 0.05) was observed. The method is simple, reproducible, precise, accurate and sensitive, and can be routinely utilized in clinical laboratories.
Resumo:
Phosphorus is an essential nutrient for life. In the ocean, phosphorus burial regulates marine primary production**1, 2. Phosphorus is removed from the ocean by sedimentation of organic matter, and the subsequent conversion of organic phosphorus to phosphate minerals such as apatite, and ultimately phosphorite deposits**3, 4. Bacteria are thought to mediate these processes**5, but the mechanism of sequestration has remained unclear. Here, we present results from laboratory incubations in which we labelled organic-rich sediments from the Benguela upwelling system, Namibia, with a 33P-radiotracer, and tracked the fate of the phosphorus. We show that under both anoxic and oxic conditions, large sulphide-oxidizing bacteria accumulate 33P in their cells, and catalyse the nearly instantaneous conversion of phosphate to apatite. Apatite formation was greatest under anoxic conditions. Nutrient analyses of Namibian upwelling waters and sediments suggest that the rate of phosphate-to-apatite conversion beneath anoxic bottom waters exceeds the rate of phosphorus release during organic matter mineralization in the upper sediment layers. We suggest that bacterial apatite formation is a significant phosphorus sink under anoxic bottom-water conditions. Expanding oxygen minimum zones are projected in simulations of future climate change**6, potentially increasing sequestration of marine phosphate, and restricting marine productivity.
Resumo:
The sequential extraction procedure proposed by Tessier and total digestion were applied for the analysis of sediment samples from Tubarão River. The recoveries were between 93.5 and 102.5% for Cu and 99.2 and 111% for Pb. The precision was tipically better than 6% for Cu and 3% for Pb. Comparison of the values obtained for the total digest with the sum of the extracted fractions showed that there were no significant losses in the extraction steps so that the method can be used for the monitoring availability and mobility of these analytes. According to ten points of sampling, was possible to determined the average of labiles phases (fractions 1 and 4) for Pb and Cu: 33.70% and 18.18%, respectively; and the inert phases (fraction 5- residual): 66.30% for Pb and 81.82% for Cu.
Resumo:
Surface sediments of the Bay of Matanzas (Cuba) were studied to assess its environmental quality by using several criteria (metal content index, pollution load index and sediment quality guidelines). Two partial digestion sediment procedures and a modified BCR sequential extraction were used. The concentrations of metals were measured by atomic spectroscopy methods. The founded contents of Cu (2,4-27,9 mg kg-1), Zn (2,5-55,5 mg kg-1) and Ni (8,8-99,2 mg kg-1) were below those reported by other authors. The results obtained suggested that the most polluted sites were 3, 5, and 6. The sequential extraction procedure showed that most of the studied metals were associated to the more stable fractions.
Resumo:
A sequential extraction procedure was applied to wheat and soybean seed samples. The total protein content (determined by two distinct methods: Bradford and bicinchoninic acid-BCA) and distribution of Cu, Fe, Mn and Zn in each fraction was determined. The sequential extraction employed four different solutions: water, 0.5 mol L-1 NaCl, ethanol/water (70:30 v v-1) and 0.5 mol L-1 NaOH. For both samples, the highest concentration of metals was observed in those extracts associated with globulin-type proteins using NaCl solution. Regarding protein content, higher levels were obtained using the BCA method.
Resumo:
This study was aimed at to characterize the spatio-temporal trends in the distributional characteristics of various species of nitrogen and phosphorus as well as to elucidate the factors and processes aflecting these nutrients in the dissolved, particulate and sedimentary phases of a river estuarine system. The main area of study is Chalakudy river in Kerala, which is a fresh water system originating from Anamalai hills and ending at Arabian Sea. Its basin is between I00 05 ’ to I00 35’ North latitude and 76” 15 ’ to 760 55’ East longitude. Being a riparian bufler zone, the dynamics of nutrient mobility tend to be more complex and variable in this river-estuarine system.The diflerent species of nitrogen estimated from the filtrate were nitrite-N, nitrateN, ammonia-N, urea-N, total nitrogen and residual nitrogen. The diflerent forms of phosphorus estimated from the filtrate were phosphate-P, total-P and residualP. Pre weighed sediments as well as particulate matter were analysed for quantijying nitrite-N, nitrate-N, ammonia-N and urea-N. Total nitrogen was estimated after digestion with potassium persulfate. Fractionation of phosphorus in sediment/particulate matter was performed by applying sequential extraction procedure. The dijferent forms of phosphorus thus estimated were loosely bound (exchangeable) P, Fe/Al bound P, polyphosphates, Ca bound P and refractory P. Sedimental total P was also measured directly by applying digestion method.The analyses carried out in this bimonthly annual survey have revealed specific information on the latent factors influencing the water quality pattern ofthe river. There was dependence among the chemical components of the river sediment and suspended matter, reflecting the water quality. A period of profound environmental change occurred and changes in various species had been noted in association with seasonal variations in the waterway, especially following enhanced river runoff during the monsoon. The results also successfully represented the distribution trend of nutrients during the rainy as well as dry season. Thus, the information gathered in this work will also be beneficial for those interested or involved in river management, conservation, regulation and policy making in regional and national levels.