967 resultados para Sequential analysis
Resumo:
This thesis is an empirical study of how two words in Icelandic, "nú" and "núna", are used in contemporary Icelandic conversation. My aims in this study are, first, to explain the differences between the temporal functions of "nú" and "núna", and, second, to describe the non-temporal functions of "nú". In the analysis, a focus is placed on comparing the sequential placement of the two words, on their syntactical distribution, and on their prosodic realization. The empirical data comprise 14 hours and 11 minutes of naturally occurring conversation recorded between 1996 and 2003. The selected conversations represent a wide range of interactional contexts including informal dinner parties, institutional and non-institutional telephone conversations, radio programs for teenagers, phone-in programs, and, finally, a political debate on television. The theoretical and methodological framework is interactional linguistics, which can be described as linguistically oriented conversation analysis (CA). A comparison of "nú" and "núna" shows that the two words have different syntactic distributions. "Nú" has a clear tendency to occur in the front field, before the finite verb, while "núna" typically occurs in the end field, after the object. It is argued that this syntactic difference reflects a functional difference between "nú" and "núna". A sequential analysis of "núna" shows that the word refers to an unspecified period of time which includes the utterance time as well as some time in the past and in the future. This temporal relation is referred to as reference time. "Nú", by contrast, is mainly used in three different environments: a) in temporal comparisons, 2) in transitions, and 3) when the speaker is taking an affective stance. The non-temporal functions of "nú" are divided into three categories: a) "nú" as a tone particle, 2) "nú" as an utterance particle, and 3) "nú" as a dialogue particle. "Nú" as a tone particle is syntactically integrated and can occur in two syntactic positions: pre-verbally and post-verbally. I argue that these instances are employed in utterances in which a speaker is foregrounding information or marking it as particularly important. The study shows that, although these instances are typically prosodically non-prominent and unstressed, they are in some cases delivered with stress and with a higher pitch than the surrounding talk. "Nú" as an utterance particle occurs turn-initially and is syntactically non-integrated. By using "nú", speakers show continuity between turns and link new turns to prior ones. These instances initiate either continuations by the same speaker or new turns after speaker shifts. "Nú" as a dialogue particle occurs as a turn of its own. The study shows that these instances register informings in prior turns as unexpected or as a departure from the normal state of affairs. "Nú" as a dialogue particle is often delivered with a prolonged vowel and a recognizable intonation contour. A comparative sequential and prosodic analysis shows that in these cases there is a correlation between the function of "nú" and the intonation contour by which it is delivered. Finally, I argue that despite the many functions of "nú", all the instances can be said to have a common denominator, which is to display attention towards the present moment and the utterances which are produced prior or after the production of "nú". Instead of anchoring the utterances in external time or reference time, these instances position the utterance in discourse internal time, or discourse time.
Resumo:
Fish sausages are finely ground fish flesh, either of a single species or mixed, homogenised with starch, sugar, fat, spices and preservatives, generally filled in cylindrical synthetic or natural casings and pasteurised. Similar products containing small pieces of quality fish and lard are termed "fish ham". They are highly relished products in Japan, annual consumption exceeding 2 lakh tones. Preliminary studies have shown that they can catch a lucrative market in our country. However, being a pasteurised product which is often consumed as such without any further cooking, strict quality control measures have to be enforced so as to avoid food poisoning hazards. Besides physical characteristics like absence of damages, pin-holes, curliness and air pockets as well as jelly strength, texture and flavour, chemical characteristics like pH and acid values, moisture, carbohydrate and fat contents and volatile bases have to be assessed. A very important test that has to be carried out along with the above, before passing a lot for free distribution is the bacteriological examination to avoid the presence of pathogenic organisms.
Resumo:
Narrative therapy is a postmodern therapy that takes the position that people create self-narratives to make sense of their experiences. To date, narrative therapy has compiled virtually no quantitative and very little qualitative research, leaving gaps in almost all areas of process and outcome. White (2006a), one of the therapy's founders, has recently utilized Vygotsky's (1934/1987) theories of the zone of proximal development (ZPD) and concept formation to describe the process of change in narrative therapy with children. In collaboration with the child client, the narrative therapist formalizes therapeutic concepts and submits them to increasing levels of generalization to create a ZPD. This study sought to determine whether the child's development proceeds through the stages of concept formation over the course of a session, and whether therapists' utterances scaffold this movement. A sequential analysis was used due to its unique ability to measure dynamic processes in social interactions. Stages of concept formation and scaffolding were coded over time. A hierarchical log-linear analysis was performed on the sequential data to develop a model of therapist scaffolding and child concept development. This was intended to determine what patterns occur and whether the stated intent of narrative therapy matches its actual process. In accordance with narrative therapy theory, the log-linear analysis produced a final model with interactions between therapist and child utterances, and between both therapist and child utterances and time. Specifically, the child and youth participants in therapy tended to respond to therapist scaffolding at the corresponding level of concept formation. Both children and youth and therapists also tended to move away from earlier and toward later stages of White's scaffolding conversations map as the therapy session advanced. These findings provide support for White's contention that narrative therapists promote child development by scaffolding child concept formation in therapy.
The sequential analysis of repeated binary responses: a score test for the case of three time points
Resumo:
In this paper a robust method is developed for the analysis of data consisting of repeated binary observations taken at up to three fixed time points on each subject. The primary objective is to compare outcomes at the last time point, using earlier observations to predict this for subjects with incomplete records. A score test is derived. The method is developed for application to sequential clinical trials, as at interim analyses there will be many incomplete records occurring in non-informative patterns. Motivation for the methodology comes from experience with clinical trials in stroke and head injury, and data from one such trial is used to illustrate the approach. Extensions to more than three time points and to allow for stratification are discussed. Copyright © 2005 John Wiley & Sons, Ltd.
Resumo:
A role for sequential test procedures is emerging in genetic and epidemiological studies using banked biological resources. This stems from the methodology's potential for improved use of information relative to comparable fixed sample designs. Studies in which cost, time and ethics feature prominently are particularly suited to a sequential approach. In this paper sequential procedures for matched case–control studies with binary data will be investigated and assessed. Design issues such as sample size evaluation and error rates are identified and addressed. The methodology is illustrated and evaluated using both real and simulated data sets.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Bibliography: p. 46.
Resumo:
The objective of this study was to investigate the effects of circularity, comorbidity, prevalence and presentation variation on the accuracy of differential diagnoses made in optometric primary care using a modified form of naïve Bayesian sequential analysis. No such investigation has ever been reported before. Data were collected for 1422 cases seen over one year. Positive test outcomes were recorded for case history (ethnicity, age, symptoms and ocular and medical history) and clinical signs in relation to each diagnosis. For this reason only positive likelihood ratios were used for this modified form of Bayesian analysis that was carried out with Laplacian correction and Chi-square filtration. Accuracy was expressed as the percentage of cases for which the diagnoses made by the clinician appeared at the top of a list generated by Bayesian analysis. Preliminary analyses were carried out on 10 diagnoses and 15 test outcomes. Accuracy of 100% was achieved in the absence of presentation variation but dropped by 6% when variation existed. Circularity artificially elevated accuracy by 0.5%. Surprisingly, removal of Chi-square filtering increased accuracy by 0.4%. Decision tree analysis showed that accuracy was influenced primarily by prevalence followed by presentation variation and comorbidity. Analysis of 35 diagnoses and 105 test outcomes followed. This explored the use of positive likelihood ratios, derived from the case history, to recommend signs to look for. Accuracy of 72% was achieved when all clinical signs were entered. The drop in accuracy, compared to the preliminary analysis, was attributed to the fact that some diagnoses lacked strong diagnostic signs; the accuracy increased by 1% when only recommended signs were entered. Chi-square filtering improved recommended test selection. Decision tree analysis showed that accuracy again influenced primarily by prevalence, followed by comorbidity and presentation variation. Future work will explore the use of likelihood ratios based on positive and negative test findings prior to considering naïve Bayesian analysis as a form of artificial intelligence in optometric practice.
Resumo:
The advances in three related areas of state-space modeling, sequential Bayesian learning, and decision analysis are addressed, with the statistical challenges of scalability and associated dynamic sparsity. The key theme that ties the three areas is Bayesian model emulation: solving challenging analysis/computational problems using creative model emulators. This idea defines theoretical and applied advances in non-linear, non-Gaussian state-space modeling, dynamic sparsity, decision analysis and statistical computation, across linked contexts of multivariate time series and dynamic networks studies. Examples and applications in financial time series and portfolio analysis, macroeconomics and internet studies from computational advertising demonstrate the utility of the core methodological innovations.
Chapter 1 summarizes the three areas/problems and the key idea of emulating in those areas. Chapter 2 discusses the sequential analysis of latent threshold models with use of emulating models that allows for analytical filtering to enhance the efficiency of posterior sampling. Chapter 3 examines the emulator model in decision analysis, or the synthetic model, that is equivalent to the loss function in the original minimization problem, and shows its performance in the context of sequential portfolio optimization. Chapter 4 describes the method for modeling the steaming data of counts observed on a large network that relies on emulating the whole, dependent network model by independent, conjugate sub-models customized to each set of flow. Chapter 5 reviews those advances and makes the concluding remarks.
Resumo:
Today’s evolving networks are experiencing a large number of different attacks ranging from system break-ins, infection from automatic attack tools such as worms, viruses, trojan horses and denial of service (DoS). One important aspect of such attacks is that they are often indiscriminate and target Internet addresses without regard to whether they are bona fide allocated or not. Due to the absence of any advertised host services the traffic observed on unused IP addresses is by definition unsolicited and likely to be either opportunistic or malicious. The analysis of large repositories of such traffic can be used to extract useful information about both ongoing and new attack patterns and unearth unusual attack behaviors. However, such an analysis is difficult due to the size and nature of the collected traffic on unused address spaces. In this dissertation, we present a network traffic analysis technique which uses traffic collected from unused address spaces and relies on the statistical properties of the collected traffic, in order to accurately and quickly detect new and ongoing network anomalies. Detection of network anomalies is based on the concept that an anomalous activity usually transforms the network parameters in such a way that their statistical properties no longer remain constant, resulting in abrupt changes. In this dissertation, we use sequential analysis techniques to identify changes in the behavior of network traffic targeting unused address spaces to unveil both ongoing and new attack patterns. Specifically, we have developed a dynamic sliding window based non-parametric cumulative sum change detection techniques for identification of changes in network traffic. Furthermore we have introduced dynamic thresholds to detect changes in network traffic behavior and also detect when a particular change has ended. Experimental results are presented that demonstrate the operational effectiveness and efficiency of the proposed approach, using both synthetically generated datasets and real network traces collected from a dedicated block of unused IP addresses.