992 resultados para Sequential Excavation Method
Resumo:
This paper aims to describe the Sequential Excavation Method, used for excava-tion in underground works, as well as the related risks and preventive measures. This method has characteristics that differentiate it from other tunnelling techniques: it uses a larger number of workers and equipment; it has a high concurrency of tasks with various workers and equip-ment quite exposed to hazards; and it uses many potentially aggressive chemicals. Firstly, it is given a broad overview of this issue. Afterwards, it will be presented the results of a survey to a sample of experienced technicians, aimed at gauging the relevance of a set of guidelines relat-ing to the design and work phases, applicable to the domestic market and prepared following technical visits to works abroad.
An investigation of sequential sampling method for crossdocking simulation output variance reduction
Resumo:
Artificial neural networks have been used to analyze a number of engineering problems, including settlement caused by different tunneling methods in various types of ground mass. This paper focuses on settlement over shotcrete- supported tunnels on Sao Paulo subway line 2 (West Extension) that were excavated in Tertiary sediments using the sequential excavation method. The adjusted network is a good tool for predicting settlement above new tunnels to be excavated in similar conditions. The influence of network training parameters on the quality of results is also discussed. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Despite improvements over the years, accidents continue to be a scourge in the construction sector, leading to an increase in the number of journal articles addressing the issue, in an attempt to help construction industry to increase safety performance [1]. This paper aims to, helping construction industry and particulary tunneling community, describe the Portuguese approach to most typical health and safety problems in underground excavations performed with the Sequential Excavation Method (SEM). The article will address various topics, from safety management and organizational practices, to collective and personal protection equipment, to emergency planning. nt problems in safety and health matters are similar to several other countries, the paper will expose a compilation of Portuguese best practices used to solve that problems. This enunciation of best practices describes experience from most important and recognized Project Owners and Contractors in Portugal. In a second phase it will be analysed Portuguese weaknesses, identifying preventive measures, and their comparative importance, that should be adopted in Portugal in order to reduce accidents and health diseases.
Resumo:
This work describes the development and optimization of a sequential injection method to automate the determination of paraquat by square-wave voltammetry employing a hanging mercury drop electrode. Automation by sequential injection enhanced the sampling throughput, improving the sensitivity and precision of the measurements as a consequence of the highly reproducible and efficient conditions of mass transport of the analyte toward the electrode surface. For instance, 212 analyses can be made per hour if the sample/standard solution is prepared off-line and the sequential injection system is used just to inject the solution towards the flow cell. In-line sample conditioning reduces the sampling frequency to 44 h(-1). Experiments were performed in 0.10 M NaCl, which was the carrier solution, using a frequency of 200 Hz, a pulse height of 25 mV, a potential step of 2 mV, and a flow rate of 100 mu L s(-1). For a concentration range between 0.010 and 0.25 mg L(-1), the current (i(p), mu A) read at the potential corresponding to the peak maximum fitted the following linear equation with the paraquat concentration (mg L(-1)): ip = (-20.5 +/- 0.3) Cparaquat -(0.02 +/- 0.03). The limits of detection and quantification were 2.0 and 7.0 mu g L(-1), respectively. The accuracy of the method was evaluated by recovery studies using spiked water samples that were also analyzed by molecular absorption spectrophotometry after reduction of paraquat with sodium dithionite in an alkaline medium. No evidence of statistically significant differences between the two methods was observed at the 95% confidence level.
Resumo:
Risk management is of paramount importance in the success of tunnelling works and is linked to the tunnelling method and to the constraints of the works. Sequencial Excavation Method (SEM) and Tun-nel Boring Machine (TBM) method have been competing for years. This article, part of a wider study on the influence of the â Safety and Healthâ criterion in the choice of method, reviews the existing literature about the criteria usually employed to choose the tunnelling method and on the criterion â Safety and Healthâ . This crite-rion is particularly important, due to the financial impacts of work accidents and occupational diseases. This article is especially useful to the scientific and technical community, since it synthesizes the relevance of each one of the choice criteria used and it shows why â Safety and Healthâ must be a criterion in the decision mak-ing process to choose the tunnelling method.
Resumo:
A sequential study design generally makes more efficient use of available information than a fixed sample counterpart of equal power. This feature is gradually being exploited by researchers in genetic and epidemiological investigations that utilize banked biological resources and in studies where time, cost and ethics are prominent considerations. Recent work in this area has focussed on the sequential analysis of matched case-control studies with a dichotomous trait. In this paper, we extend the sequential approach to a comparison of the associations within two independent groups of paired continuous observations. Such a comparison is particularly relevant in familial studies of phenotypic correlation using twins. We develop a sequential twin method based on the intraclass correlation and show that use of sequential methodology can lead to a substantial reduction in the number of observations without compromising the study error rates. Additionally, our approach permits straightforward allowance for other explanatory factors in the analysis. We illustrate our method in a sequential heritability study of dysplasia that allows for the effect of body mass index and compares monozygotes with pairs of singleton sisters. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
This paper describes the development of a sequential injection method to automate the fluorimetric determination of glyphosate based on a first step of oxidation to glycine by hypochlorite at 48 degrees C, followed by reaction with the fluorogenic reagent o-phthaldialdehyde in presence of 2-mercaptoethanol in borate buffer (pH > 9) to produce a fluorescent 1-(2`-hydroxyethylthio)-2-N-alkylisoindole. The proposed method has a linear response for glyphosate concentrations between 0.25 and 25.0 mu mol L(-1), with limits of detection and quantification of 0.08 and 0.25 mu mol L(-1), respectively. The sampling rate of the method is 18 samples per hour, consuming only a fraction of reagents consumed by the chromatographic method based on the same chemistry. The method was applied to study adsorption/desorption properties in a soil and in a sediment sample. Adsorption and desorption isotherms were properly fitted by Freundlich and Langmuir equations, leading to adsorption capacities of 1384 +/- 26 and 295 +/- 30 mg kg(-1) for the soil and sediment samples, respectively. These values are consistent with the literature, with the larger adsorption capacity of the soil being explained by its larger content of clay minerals, while the sediment was predominantly sandy. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the development and evaluation of a sequential injection method to automate the determination of methyl parathion by square wave adsorptive cathodic stripping voltammetry exploiting the concept of monosegmented flow analysis to perform in-line sample conditioning and standard addition. Accumulation and stripping steps are made in the sample medium conditioned with 40 mmol L-1 Britton-Robinson buffer (pH 10) in 0.25 mol L-1 NaNO3. The homogenized mixture is injected at a flow rate of 10 mu Ls(-1) toward the flow cell, which is adapted to the capillary of a hanging drop mercury electrode. After a suitable deposition time, the flow is stopped and the potential is scanned from -0.3 to -1.0 V versus Ag/AgCl at frequency of 250 Hz and pulse height of 25 mV The linear dynamic range is observed for methyl parathion concentrations between 0.010 and 0.50 mgL(-1), with detection and quantification limits of 2 and 7 mu gL(-1), respectively. The sampling throughput is 25 h(-1) if the in line standard addition and sample conditioning protocols are followed, but this frequency can be increased up to 61 h(-1) if the sample is conditioned off-line and quantified using an external calibration curve. The method was applied for determination of methyl parathion in spiked water samples and the accuracy was evaluated either by comparison to high performance liquid chromatography with UV detection, or by the recovery percentages. Although no evidences of statistically significant differences were observed between the expected and obtained concentrations, because of the susceptibility of the method to interference by other pesticides (e.g., parathion, dichlorvos) and natural organic matter (e.g., fulvic and humic acids), isolation of the analyte may be required when more complex sample matrices are encountered. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Little is known about the situational contexts in which individuals consume processed sources of dietary sugars. This study aimed to describe the situational contexts associated with the consumption of sweetened food and drink products in a Catholic Middle Eastern Canadian community. A two-stage exploratory sequential mixed-method design was employed with a rationale of triangulation. In stage 1 (n = 62), items and themes describing the situational contexts of sweetened food and drink product consumption were identified from semi-structured interviews and were used to develop the content for the Situational Context Instrument for Sweetened Product Consumption (SCISPC). Face validity, readability and cultural relevance of the instrument were assessed. In stage 2 (n = 192), a cross-sectional study was conducted and exploratory factor analysis was used to examine the structure of themes that emerged from the qualitative analysis as a means of furthering construct validation. The SCISPC reliability and predictive validity on the daily consumption of sweetened products were also assessed. In stage 1, six themes and 40-items describing the situational contexts of sweetened product consumption emerged from the qualitative analysis and were used to construct the first draft of the SCISPC. In stage 2, factor analysis enabled the clarification and/or expansion of the instrument's initial thematic structure. The revised SCISPC has seven factors and 31 items describing the situational contexts of sweetened product consumption. Initial validation of the instrument indicated it has excellent internal consistency and adequate test-retest reliability. Two factors of the SCISPC had predictive validity for the daily consumption of total sugar from sweetened products (Snacking and Energy demands) while the other factors (Socialization, Indulgence, Constraints, Visual Stimuli and Emotional needs) were rather associated to occasional consumption of these products.
Resumo:
A sequential design method is presented for the design of thermally coupled distillation sequences. The algorithm starts by selecting a set of sequences in the space of basic configurations in which the internal structure of condensers and reboilers is explicitly taken into account and extended with the possibility of including divided wall columns (DWC). This first stage is based on separation tasks (except by the DWCs) and therefore it does not provide an actual sequence of columns. In the second stage the best arrangement in N-1 actual columns is performed taking into account operability and mechanical constraints. Finally, for a set of candidate sequences the algorithm try to reduce the number of total columns by considering Kaibel columns, elimination of transfer blocks or columns with vertical partitions. An example illustrate the different steps of the sequential algorithm.
Resumo:
Assaying a large number of genetic markers from patients in clinical trials is now possible in order to tailor drugs with respect to efficacy. The statistical methodology for analysing such massive data sets is challenging. The most popular type of statistical analysis is to use a univariate test for each genetic marker, once all the data from a clinical study have been collected. This paper presents a sequential method for conducting an omnibus test for detecting gene-drug interactions across the genome, thus allowing informed decisions at the earliest opportunity and overcoming the multiple testing problems from conducting many univariate tests. We first propose an omnibus test for a fixed sample size. This test is based on combining F-statistics that test for an interaction between treatment and the individual single nucleotide polymorphism (SNP). As SNPs tend to be correlated, we use permutations to calculate a global p-value. We extend our omnibus test to the sequential case. In order to control the type I error rate, we propose a sequential method that uses permutations to obtain the stopping boundaries. The results of a simulation study show that the sequential permutation method is more powerful than alternative sequential methods that control the type I error rate, such as the inverse-normal method. The proposed method is flexible as we do not need to assume a mode of inheritance and can also adjust for confounding factors. An application to real clinical data illustrates that the method is computationally feasible for a large number of SNPs. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
This paper describes a method for the state estimation of nonlinear systems described by a class of differential-algebraic equation models using the extended Kalman filter. The method involves the use of a time-varying linearisation of a semi-explicit index one differential-algebraic equation. The estimation technique consists of a simplified extended Kalman filter that is integrated with the differential-algebraic equation model. The paper describes a simulation study using a model of a batch chemical reactor. It also reports a study based on experimental data obtained from a mixing process, where the model of the system is solved using the sequential modular method and the estimation involves a bank of extended Kalman filters.
Resumo:
Four alkyl substituted β-lactones were investigated as monomers in ring opening polymerisation to produce a family of poly(3-hydroxyalkanoate)s. Homopolymers were synthesised using a robust aluminium salen catalyst, resulting in polymers with low dispersity (Đ < 1.1) and predictable molecular weights. ABA triblock copolymers were prepared using poly(L-lactic acid) as the A block and the aforementioned poly(3-hydroxyalkanoate) as the B block via a sequential addition method. Characterisation of these copolymers determined they were well controlled with low dispersities and predictable molecular weight. DSC analysis determined copolymers prepared from β-butyrolactone or β-valerolactone yielded polymers with tunable and predictable thermal properties. Copolymers prepared from β-heptanolactone yielded a microphase separated material as indicated by SAXS, with two distinct Tgs. The polymers could be readily cast into flexible films and their improved tensile properties were explored.