981 resultados para Sentiment Lexicon
Resumo:
This paper presents an approach to create what we have called a Unified Sentiment Lexicon (USL). This approach aims at aligning, unifying, and expanding the set of sentiment lexicons which are available on the web in order to increase their robustness of coverage. One problem related to the task of the automatic unification of different scores of sentiment lexicons is that there are multiple lexical entries for which the classification of positive, negative, or neutral {P, Z, N} depends on the unit of measurement used in the annotation methodology of the source sentiment lexicon. Our USL approach computes the unified strength of polarity of each lexical entry based on the Pearson correlation coefficient which measures how correlated lexical entries are with a value between 1 and -1, where 1 indicates that the lexical entries are perfectly correlated, 0 indicates no correlation, and -1 means they are perfectly inversely correlated and so is the UnifiedMetrics procedure for CPU and GPU, respectively. Another problem is the high processing time required for computing all the lexical entries in the unification task. Thus, the USL approach computes a subset of lexical entries in each of the 1344 GPU cores and uses parallel processing in order to unify 155802 lexical entries. The results of the analysis conducted using the USL approach show that the USL has 95.430 lexical entries, out of which there are 35.201 considered to be positive, 22.029 negative, and 38.200 neutral. Finally, the runtime was 10 minutes for 95.430 lexical entries; this allows a reduction of the time computing for the UnifiedMetrics by 3 times.
Resumo:
This approach aims at aligning, unifying and expanding the set of sentiment lexicons which are available on the web in order to increase their robustness of coverage. A sentiment lexicon is a critical and essential resource for tagging subjective corpora on the web or elsewhere. In many situations, the multilingual property of the sentiment lexicon is important because the writer is using two languages alternately in the same text, message or post. Our USL approach computes the unified strength of polarity of each lexical entry based on the Pearson correlation coefficient which measures how correlated lexical entries are with a value between 1 and -1, where 1 indicates that the lexical entries are perfectly correlated, 0 indicates no correlation, and -1 means they are perfectly inversely correlated and the UnifiedMetrics procedure for CPU and GPU, respectively.
Resumo:
Search is now going beyond looking for factual information, and people wish to search for the opinions of others to help them in their own decision-making. Sentiment expressions or opinion expressions are used by users to express their opinion and embody important pieces of information, particularly in online commerce. The main problem that the present dissertation addresses is how to model text to find meaningful words that express a sentiment. In this context, I investigate the viability of automatically generating a sentiment lexicon for opinion retrieval and sentiment classification applications. For this research objective we propose to capture sentiment words that are derived from online users’ reviews. In this approach, we tackle a major challenge in sentiment analysis which is the detection of words that express subjective preference and domain-specific sentiment words such as jargon. To this aim we present a fully generative method that automatically learns a domain-specific lexicon and is fully independent of external sources. Sentiment lexicons can be applied in a broad set of applications, however popular recommendation algorithms have somehow been disconnected from sentiment analysis. Therefore, we present a study that explores the viability of applying sentiment analysis techniques to infer ratings in a recommendation algorithm. Furthermore, entities’ reputation is intrinsically associated with sentiment words that have a positive or negative relation with those entities. Hence, is provided a study that observes the viability of using a domain-specific lexicon to compute entities reputation. Finally, a recommendation system algorithm is improved with the use of sentiment-based ratings and entities reputation.
Resumo:
Sentiment analysis concerns about automatically identifying sentiment or opinion expressed in a given piece of text. Most prior work either use prior lexical knowledge defined as sentiment polarity of words or view the task as a text classification problem and rely on labeled corpora to train a sentiment classifier. While lexicon-based approaches do not adapt well to different domains, corpus-based approaches require expensive manual annotation effort. In this paper, we propose a novel framework where an initial classifier is learned by incorporating prior information extracted from an existing sentiment lexicon with preferences on expectations of sentiment labels of those lexicon words being expressed using generalized expectation criteria. Documents classified with high confidence are then used as pseudo-labeled examples for automatical domain-specific feature acquisition. The word-class distributions of such self-learned features are estimated from the pseudo-labeled examples and are used to train another classifier by constraining the model's predictions on unlabeled instances. Experiments on both the movie-review data and the multi-domain sentiment dataset show that our approach attains comparable or better performance than existing weakly-supervised sentiment classification methods despite using no labeled documents.
Resumo:
We propose a novel framework where an initial classifier is learned by incorporating prior information extracted from an existing sentiment lexicon. Preferences on expectations of sentiment labels of those lexicon words are expressed using generalized expectation criteria. Documents classified with high confidence are then used as pseudo-labeled examples for automatical domain-specific feature acquisition. The word-class distributions of such self-learned features are estimated from the pseudo-labeled examples and are used to train another classifier by constraining the model's predictions on unlabeled instances. Experiments on both the movie review data and the multi-domain sentiment dataset show that our approach attains comparable or better performance than exiting weakly-supervised sentiment classification methods despite using no labeled documents.
Resumo:
Sentiment lexicons for sentiment analysis offer a simple, yet effective way to obtain the prior sentiment information of opinionated words in texts. However, words' sentiment orientations and strengths often change throughout various contexts in which the words appear. In this paper, we propose a lexicon adaptation approach that uses the contextual semantics of words to capture their contexts in tweet messages and update their prior sentiment orientations and/or strengths accordingly. We evaluate our approach on one state-of-the-art sentiment lexicon using three different Twitter datasets. Results show that the sentiment lexicons adapted by our approach outperform the original lexicon in accuracy and F-measure in two datasets, but give similar accuracy and slightly lower F-measure in one dataset.
Resumo:
Sentiment lexicons for sentiment analysis offer a simple, yet effective way to obtain the prior sentiment information of opinionated words in texts. However, words’ sentiment orientations and strengths often change throughout various contexts in which the words appear. In this paper, we propose a lexicon adaptation approach that uses the contextual semantics of words to capture their contexts in tweet messages and update their prior sentiment orientations and/or strengths accordingly. We evaluate our approach on one state-of-the-art sentiment lexicon using three different Twitter datasets. Results show that the sentiment lexicons adapted by our approach outperform the original lexicon in accuracy and F-measure in two datasets, but give similar accuracy and slightly lower F-measure in one dataset.
Resumo:
Esta tesis presenta un modelo, una metodología, una arquitectura, varios algoritmos y programas para crear un lexicón de sentimientos unificado (LSU) que cubre cuatro lenguas: inglés, español, portugués y chino. El objetivo principal es alinear, unificar, y expandir el conjunto de lexicones de sentimientos disponibles en Internet y los desarrollados a lo largo de esta investigación. Así, el principal problema a resolver es la tarea de unificar de forma automatizada los diferentes lexicones de sentimientos obtenidos por el crawler CSR, porque la unidad de medida para asignar la intensidad de los valores de la polaridad (de forma manual, semiautomática y automática) varía de acuerdo con las diferentes metodologías utilizadas para la construcción de cada lexicón. La representación codificada de la estructura de datos de los términos presenta también una variación en la estructura de lexicón a lexicón. Por lo que al unificar en un lexicón de sentimientos se hace posible la reutilización del conocimiento recopilado por los diferentes grupos de investigación y se incrementa, a la vez, el alcance, la calidad y la robustez de los lexicones. Nuestra metodología LSU calcula un valor unificado de la intensidad de la polaridad para cada entrada léxica que está presente en al menos dos de los lexicones de sentimientos que forman parte de este estudio. En contraste, las entradas léxicas que no son comunes en al menos dos de los lexicones conservan su valor original. El coeficiente de Pearson resultante permite medir la correlación existente entre las entradas léxicas asignándoles un rango de valores de uno a menos uno, donde uno indica que los valores de los términos están perfectamente correlacionados, cero indica que no existe correlación y menos uno significa que están inversamente correlacionados. Este procedimiento se lleva acabo con la función de MetricasUnificadas tanto en la CPU como en la GPU. Otro problema a resolver es el tiempo de procesamiento que se requiere para realizar la tarea de unificación de la intensidad de la polaridad y con ello alcanzar una cobertura mayor de lemas en los lexicones de sentimientos existentes. Asimismo, la metodología LSU utiliza el procesamiento paralelo para unificar los 155 802 términos. El algoritmo LSU procesa mediante cargas iguales el subconjunto de entradas léxicas en cada uno de los 1344 núcleos en la GPU. Los resultados de nuestro análisis arrojaron un total de 95 430 entradas léxicas donde 35 201 obtuvieron valores positivos, 22 029 negativos y 38 200 neutrales. Finalmente, el tiempo de ejecución fue de 2,506 segundos para el total de las entradas léxicas, lo que permitió reducir el procesamiento de cómputo hasta en una tercera parte con respecto al algoritmo secuencial. De estos resultados se concluye que al lograr un lexicón de sentimientos unificado que permite homogeneizar la intensidad de la polaridad de las unidades léxicas (con valores positivos, negativos y neutrales) deriva no sólo en el análisis semántico del corpus basado en los términos con una mayor carga de polaridad, o del resumen de las valoraciones o las tendencias de neuromarketing, sino también en aplicaciones como el etiquetado subjetivo de sitios web o de portales sintácticos y semánticos, por mencionar algunas. ABSTRACT This thesis presents an approach to create what we have called a Unified Sentiment Lexicon (USL). This approach aims at aligning, unifying, and expanding the set of sentiment lexicons which are available on the web in order to increase their robustness of coverage. One problem related to the task of the automatic unification of different scores of sentiment lexicons is that there are multiple lexical entries for which the classification of positive, negative, or neutral P, N, Z depends on the unit of measurement used in the annotation methodology of the source sentiment lexicon. Our USL approach computes the unified strength of polarity of each lexical entry based on the Pearson correlation coefficient which measures how correlated lexical entries are with a value between 1 and - 1 , where 1 indicates that the lexical entries are perfectly correlated, 0 indicates no correlation, and -1 means they are perfectly inversely correlated and so is the UnifiedMetrics procedure for CPU and GPU, respectively. Another problem is the high processing time required for computing all the lexical entries in the unification task. Thus, the USL approach computes a subset of lexical entries in each of the 1344 GPU cores and uses parallel processing in order to unify 155,802 lexical entries. The results of the analysis conducted using the USL approach show that the USL has 95,430 lexical entries, out of which there are 35,201 considered to be positive, 22,029 negative, and 38,200 neutral. Finally, the runtime was 2.505 seconds for 95,430 lexical entries; this allows a reduction of the time computing for the UnifiedMetrics by 3 times with respect to the sequential implementation. A key contribution of this work is that we preserve the use of a unified sentiment lexicon for all tasks. Such lexicon is used to define resources and resource-related properties that can be verified based on the results of the analysis and is powerful, general and extensible enough to express a large class of interesting properties. Some applications of this work include merging, aligning, pruning and extending the current sentiment lexicons.
Resumo:
Report published in the Proceedings of the National Conference on "Education in the Information Society", Plovdiv, May, 2013
Resumo:
This paper describes our participation at SemEval- 2014 sentiment analysis task, in both contextual and message polarity classification. Our idea was to com- pare two different techniques for sentiment analysis. First, a machine learning classifier specifically built for the task using the provided training corpus. On the other hand, a lexicon-based approach using natural language processing techniques, developed for a ge- neric sentiment analysis task with no adaptation to the provided training corpus. Results, though far from the best runs, prove that the generic model is more robust as it achieves a more balanced evaluation for message polarity along the different test sets.
Resumo:
This article presents two novel approaches for incorporating sentiment prior knowledge into the topic model for weakly supervised sentiment analysis where sentiment labels are considered as topics. One is by modifying the Dirichlet prior for topic-word distribution (LDA-DP), the other is by augmenting the model objective function through adding terms that express preferences on expectations of sentiment labels of the lexicon words using generalized expectation criteria (LDA-GE). We conducted extensive experiments on English movie review data and multi-domain sentiment dataset as well as Chinese product reviews about mobile phones, digital cameras, MP3 players, and monitors. The results show that while both LDA-DP and LDAGE perform comparably to existing weakly supervised sentiment classification algorithms, they are much simpler and computationally efficient, rendering themmore suitable for online and real-time sentiment classification on the Web. We observed that LDA-GE is more effective than LDA-DP, suggesting that it should be preferred when considering employing the topic model for sentiment analysis. Moreover, both models are able to extract highly domain-salient polarity words from text.
Resumo:
Sentiment analysis on Twitter has attracted much attention recently due to its wide applications in both, commercial and public sectors. In this paper we present SentiCircles, a lexicon-based approach for sentiment analysis on Twitter. Different from typical lexicon-based approaches, which offer a fixed and static prior sentiment polarities of words regardless of their context, SentiCircles takes into account the co-occurrence patterns of words in different contexts in tweets to capture their semantics and update their pre-assigned strength and polarity in sentiment lexicons accordingly. Our approach allows for the detection of sentiment at both entity-level and tweet-level. We evaluate our proposed approach on three Twitter datasets using three different sentiment lexicons to derive word prior sentiments. Results show that our approach significantly outperforms the baselines in accuracy and F-measure for entity-level subjectivity (neutral vs. polar) and polarity (positive vs. negative) detections. For tweet-level sentiment detection, our approach performs better than the state-of-the-art SentiStrength by 4-5% in accuracy in two datasets, but falls marginally behind by 1% in F-measure in the third dataset.
Resumo:
Lexicon-based approaches to Twitter sentiment analysis are gaining much popularity due to their simplicity, domain independence, and relatively good performance. These approaches rely on sentiment lexicons, where a collection of words are marked with fixed sentiment polarities. However, words' sentiment orientation (positive, neural, negative) and/or sentiment strengths could change depending on context and targeted entities. In this paper we present SentiCircle; a novel lexicon-based approach that takes into account the contextual and conceptual semantics of words when calculating their sentiment orientation and strength in Twitter. We evaluate our approach on three Twitter datasets using three different sentiment lexicons. Results show that our approach significantly outperforms two lexicon baselines. Results are competitive but inconclusive when comparing to state-of-art SentiStrength, and vary from one dataset to another. SentiCircle outperforms SentiStrength in accuracy on average, but falls marginally behind in F-measure. © 2014 Springer International Publishing.
Resumo:
University students spelled low-frequency words to dictation and subsequently made lexical decisions to them. In Experiment I, lexical decisions were slower on words students had spelled incorrectly relative to words they had spelled correctly, and there A as a larger repetition benefit 101 incorrectly spelled words. In experiment 2, the latency advantage for items spelled correctly was replicated when words were presented for only 200 ms and also in a spelling recognition task, In Experiment 3. masked identity and form priming effects were similar for words that had been spelled correctly and incorrectly, Item spelling accuracy tracked word frequency effects in the way chat it combined with repetition and priming effects. we inter that an individuals learning with a word's orthography underlies word frequency and item spelling accuracy effects and that a single orthographic lexicon serves visual word recognition and spelling. (C) 2000 Elsevier Science (USA).