783 resultados para Semiconductors.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic europium chalcogenide semiconductors EuTe and EuSe are investigated by the spectroscopy of second harmonic generation (SHG) in the vicinity of the optical band gap formed by transitions involving the 4f and 5d electronic orbitals of the magnetic Eu(2+) ions. In these materials with centrosymmetric crystal lattice the electric-dipole SHG process is symmetry forbidden so that no signal is observed in zero magnetic field. Signal appears, however, in applied magnetic field with the SHG intensity being proportional to the square of magnetization. The magnetic field and temperature dependencies of the induced SHG allow us to introduce a type of nonlinear optical susceptibility determined by the magnetic-dipole contribution in combination with a spontaneous or induced magnetization. The experimental results can be described qualitatively by a phenomenological model based on a symmetry analysis and are in good quantitative agreement with microscopic model calculations accounting for details of the electronic energy and spin structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Second harmonic generation is strictly forbidden in centrosymmetric materials, within the electric dipole approximation. Recently, it was found that the centrosymmetric magnetic semiconductors EuTe and EuSe can generate near-gap second harmonics, if the system is submitted to an external magnetic field. Here, a theoretical model is presented, which well describes the observed phenomena. The model shows that second harmonic generation becomes efficient when the magnetic dipole oscillations between the band-edge excited states of the system, induced by the excitation light, enter the in-phase regime, which can be achieved by applying a magnetic field to the material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spectroscopy of the centrosymmetric magnetic semiconductors EuTe and EuSe reveals spin-induced optical second harmonic generation (SHG) in the band gap vicinity at 2.1-2.4 eV. The magnetic field and temperature dependence demonstrates that the SHG arises from the bulk of the materials due to a novel type of nonlinear optical susceptibility caused by the magnetic dipole contribution combined with spontaneous or induced magnetization. This spin-induced susceptibility opens access to a wide class of centrosymmetric systems by harmonics generation spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The local-density approximation (LDA) together with the half occupation (transitionstate) is notoriously successful in the calculation of atomic ionization potentials. When it comes to extended systems, such as a semiconductor infinite system, it has been very difficult to find a way to half ionize because the hole tends to be infinitely extended (a Bloch wave). The answer to this problem lies in the LDA formalism itself. One proves that the half occupation is equivalent to introducing the hole self-energy (electrostatic and exchange correlation) into the Schrodinger equation. The argument then becomes simple: The eigenvalue minus the self-energy has to be minimized because the atom has a minimal energy. Then one simply proves that the hole is localized, not infinitely extended, because it must have maximal self-energy. Then one also arrives at an equation similar to the self- interaction correction equation, but corrected for the removal of just 1/2 electron. Applied to the calculation of band gaps and effective masses, we use the self- energy calculated in atoms and attain a precision similar to that of GW, but with the great advantage that it requires no more computational effort than standard LDA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diluted magnetic semiconductors are promising materials for spintronic applications. Usually one intents to find the ferromagnetic state but recently the antiferromagnetism (AFM) was proposed to have some advantages. In this work, we verify the possibility to obtain spin polarization with an AFM state. In particular, we studied GaN 5% double doped with two different transition metals atoms (Mn and Co or Cr and Ni), forming the Mn(x)Co(0.056-x)Ga(0.944)N and Cr(x)Ni(0.056-x)Ga(0.944)N quaternary alloys. In order to simulate these systems in a more realistic way, and take into account composition fluctuations, we adapted the generalized quasichemical approach to diluted alloys, which is used in combination with spin density-functional theory. We find that is possible to obtain an AFM ground state up to 70% spin polarization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the operation of a solid-state series stacked topology used as a serial and parallel switch in pulsed power applications. The proposed circuit, developed from the Marx generator concept, balances the voltage stress on each series stacked semiconductor, distributing the total voltage evenly. Experimental results from a 10 kV laboratory series stacked switch, using 1200 V semiconductors in a ten stages solid-state series stacked circuit, are reported and discussed, considering resistive, capacitive and inductive type loads for high and low duty factor voltage pulse operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reviews the recent research on ion and UV irradiation of β-

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a recent paper A. S. Johal and D. J. Dunstan [Phys. Rev. B 73, 024106 (2006)] have applied multivariate linear regression analysis to the published data of the change in ultrasonic velocity with applied stress. The aim is to obtain the best estimates for the third-order elastic constants in cubic materials. From such an analysis they conclude that uniaxial stress data on metals turns out to be nearly useless by itself. The purpose of this comment is to point out that by a proper analysis of uniaxial stress data it is possible to obtain reliable values of third-order elastic constants in cubic metals and alloys. Cu-based shape memory alloys are used as an illustrative example.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some problems involved in the interpretation of Hall‐effect measurements in polycrystalline semiconductors have not been resolved, especially when the contribution of the boundaries is appreciable. Using the Herring theory of transport properties in inhomogeneous semiconductors, we present an alternative interpretation to that previously proposed. This model permits the calculation of the Hall coefficient under general conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is devoted to investigations of three typical representatives of the II-V diluted magnetic semiconductors, Zn1-xMnxAs2, (Zn1-xMnx)3As2 and p-CdSb:Ni. When this work started the family of the II-V semiconductors was presented by only the compounds belonging to the subgroup II3-V2, as (Zn1-xMnx)3As2, whereas the rest of the materials mentioned above were not investigated at all. Pronounced low-field magnetic irreversibility, accompanied with a ferromagnetic transition, are observed in Zn1-xMnxAs2 and (Zn1-xMnx)3As2 near 300 K. These features give evidence for presence of MnAs nanosize magnetic clusters, responsible for frustrated ground magnetic state. In addition, (Zn1-xMnx)3As2 demonstrates large paramagnetic response due to considerable amount of single Mn ions and small antiferromagnetic clusters. Similar paramagnetic system existing in Zn1-xMnxAs2 is much weaker. Distinct low-field magnetic irreversibility, accompanied with a rapid saturation of the magnetization with increasing magnetic field, is observed near the room temperature in p- CdSb:Ni, as well. Such behavior is connected to the frustrated magnetic state, determined by Ni-rich magnetic Ni1-xSbx nanoclusters. Their large non-sphericity and preferable orientations are responsible for strong anisotropy of the coercivity and saturation magnetization of p- CdSb:Ni. Parameters of the Ni1-xSbx nanoclusters are estimated. Low-temperature resistivity of p-CdSb:Ni is governed by a hopping mechanism of charge transfer. The variable-range hopping conductivity, observed in zero magnetic field, demonstrates a tendency of transformation into the nearest-neighbor hopping conductivity in non-zero magnetic filed. The Hall effect in p-CdSb:Ni exhibits presence of a positive normal and a negative anomalous contributions to the Hall resistivity. The normal Hall coefficient is governed mainly by holes activated into the valence band, whereas the anomalous Hall effect, attributable to the Ni1-xSbx nanoclusters with ferromagnetically ordered internal spins, exhibits a low-temperature power-law resistivity scaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is devoted to growth and investigations of Mn-doped InSb and II-IV-As2 semiconductors, including Cd1-xZnxGeAs2:Mn, ZnSiAs2:Mn bulk crystals, ZnSiAs2:Mn/Si heterostructures. Bulk crystals were grown by direct melting of starting components followed by fast cooling. Mn-doped ZnSiAs2/Si heterostructures were grown by vacuum-thermal deposition of ZnAs2 and Mn layers on Si substrates followed by annealing. The compositional and structural properties of samples were investigated by different methods. The samples consist of micro- and nano- sizes clusters of an additional ferromagnetic Mn-X phases (X = Sb or As). Influence of magnetic precipitations on magnetic and electrical properties of the investigated materials was examined. With relatively high Mn concentration the main contribution to magnetization of samples is by MnSb or MnAs clusters. These clusters are responsible for high temperature behavior of magnetization and relatively high Curie temperature: up to 350 K for Mn-doped II-IV-As2 and about 600 K for InMnSb. The low-field magnetic properties of Mn-doped II-IV-As2 semiconductors and ZnSiAs2:Mn/Si heterostructures are connected to the nanosize MnAs particles. Also influence of nanosized MnSb clusters on low-field magnetic properties of InMnSb have been observed. The contribution of paramagnetic phase to magnetization rises at low temperatures or in samples with low Mn concentration. Source of this contribution is not only isolated Mn ions, but also small complexes, mainly dimmers and trimmers formed by Mn ions, substituting cation positions in crystal lattice. Resistivity, magnetoresistance and Hall resistivity properties in bulk Mn-doped II-IV-As2 and InSb crystals was analyzed. The interaction between delocalized holes and 3d shells of the Mn ions together with giant Zeeman splitting near the cluster interface are respond for negative magnetoresistance. Additionally to high temperature critical pointthe low-temperature ferromagnetic transition was observed Anomalous Hall effect was observed in Mn doped samples and analyzed for InMnSb. It was found that MnX clusters influence significantly on magnetic scattering of carriers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The understanding and engineering of bismuth (Bi) containing semiconductor surfaces are signi cant in the development of novel semiconductor materials for electronic and optoelectronic devices such as high-e ciency solar cells, lasers and light emitting diodes. For example, a Bi surface layer can be used as a surfactant which oats on a III-V compound-semiconductor surface during the epitaxial growth of IIIV lms. This Bi surfactant layer improves the lm-growth conditions if compared to the growth without the Bi layer. Therefore, detailed knowledge of the properties of the Bi/III-V surfaces is needed. In this thesis, well-de ned surface layers containing Bi have been produced on various III-V semiconductor substrates. The properties of these Bi-induced surfaces have been measured by low-energy electron di raction (LEED), scanning-tunneling microscopy and spectroscopy (STM), and synchrotron-radiation photoelectron spectroscopy. The experimental results have been compared with theoretically calculated results to resolve the atomic structures of the studied surfaces. The main ndings of this research concern the determination of the properties of an unusual Bi-containing (2×1) surface structure, the discovery and characterization of a uniform pattern of Bi nanolines, and the optimization of the preparation conditions for this Bi-nanoline pattern.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Industrial, electrical power generation, and transportation systems, to name but a few, rely heavily on power electronics to control and convert electrical power. Each of these systems, when encountering an unexpected failure, can cause significant financial losses, or even an emergency. A condition monitoring system would help to alleviate these concerns, but for the time being, there is no generally accepted and widely adopted method for power electronics. Acoustic emission is used as a failure precursor in many applications, but it has not been studied in power electronics so far. In this doctoral dissertation, observations of acoustic emission in power semiconductor components are presented. The acoustic emissions are caused by the switching operation and failure of power transistors. Three types of acoustic emission are observed. Furthermore, aspects related to the measurement and detection of acoustic phenomena are discussed. These include sensor performance and mechanical construction of experimental setups. The results presented in this dissertation are the outset of a research program where it will be determined whether an acoustic-emission-based condition monitoring method can be developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis reports on the optical properties of the dilute magnetic semiconductors, Sb1.97 V 0.03 Te3 and Sb1.94Cr0.06Te3, along with the parent compound Sb2Te3' These materials develop a ferromagnetic state at low temperature with Curie temperatures of 22 K and 16 K respectively. All three samples were oriented such that the electric field vector of the light was perpendicular to the c-axis. The reflectance profile of these samples in the mid-infrared (500 to 3000 cm-1) shows a pronounced plasma edge which retracts with decreasing temperature. The far-infrared region of these samples exhibits a phonon at ~ 60 cm-1 which softens as temperature decreases. Kramers-Kronig analysis and a Drude-Lorentz model were employed to determine the optical constants of the bulk samples. The real part of the optical conductivity is shown to consist of intraband contributions at frequencies below the energy gap (~0.26 eV) and interband contributions at frequencies above the energy gap. The temperature dependence of the scattering rate show that a mix of phonon and impurity scattering are present, while the signature of traditional spin disorder (magnetic) scattering was difficult to confirm.