979 resultados para Semi-synthetic derivatives


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In early studies, we have reported the antinociceptive profile of (-)-spectaline, a piperidine alkaloid from Cassia spectabilis. The present study describes the synthesis, the antinociceptive and anti-inflammatory activities of a series of 2,3,6-trialkyl-piperidine alkaloids: the natural (-)-3-O-acetyl-spectaline (LASSBio-755) and ten semi-synthetic spectaline derivatives. Structure-activity relationship (SARs) studies were performed. The structures of all synthesized derivatives were confirmed by means of nuclear magnetic resonance. Compounds were evaluated for their analgesic (acetic acid-induced mouse abdominal constrictions, hot-plate test, formalin-induced pain test) and some of them for the anti-inflammatory activities (carrageenan-induced rat paw edema test). The pharmacological results showed that several of the new compounds given orally at a dose of 100 mu mol/kg significantly inhibited the acetic acid-induced abdominal constrictions, but they were less active than (-)-spectaline. LASSBio-755 and LASSBio-776 were the most actives with 37% and 31.7% of inhibition. In the formalin-induced pain only LASSBio-776 was able to inhibit by 34.4% the paw licking response of the inflammatory phase, (-)-spectaline and LASSBio-755 did show any activity. In the carrageenan-induced rat paw edema, only (-)-spectaline exhibited an anti-inflammatory profile, showing an ED(50) value of 56.6 mu mol/kg. Our results suggest different mechanisms of action for the analgesic activity observed for LASSBio-776 (3-O-Bocspectaline), LASSBio-755 (3-O-acetyl-spectaline) and (-)-spectaline (LASSBio-754). The antinociceptive profile of some of the semi-synthetic spectaline derivatives extends our research concerning the chemical and pharmacological optimization of isolated natural products in the search of new drug candidates from brazilian biodiversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trans-dehydrocrotonin, the major diterpene isolated from the bark of Croton cajucara, has good antiulcerogenic activity which, however, is accompanied by toxic effects. on the basis of these results, a semi-synthetic crotonin, named 4SRC, was prepared to determine whether this substance has similar antiulcerogenic activity with lower or no toxicity. The natural crotonin was also isolated from the bark of C. cajucara but was not used due to the small amount obtained. The cytotoxic effect of semi-synthetic crotonin, expressed as cell viability, was assessed in (a) lung fibroblast cell line (V79) derived from Chinese hamsters, a system commonly used for cytotoxicity studies, and (b) rat hepatocytes isolated from male Wistar rats. After treatment, cell viability was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide reduction (MTT reduction), total acid content and neutral red uptake assays. To evaluate V79 cell viability, different concentrations of semi-synthetic crotonin were incubated with the cells. To evaluate the antiulcerogenic effects of semi-synthetic crotonin (50, 100 and 200 mg/kg), we used the models of gastric ulcer induced by ethanol/HCl, stress, indomethacin/bethanechol, and ethanol in male Swiss mice and male Wistar rats. The substance had an IC50 = 500 muM in the neutral red uptake and MTT reduction tests and an IC50 = 200 muM in the nucleic acid content test. With regard to hepatocyte viability after treatment with semi-synthetic crotonin at different concentrations, semi-synthetic crotonin had an IC50 = 10-500 muM in the nucleic acid content and MTT reduction tests and an IC50 = 120 muM in the neutral red uptake test. In another experiment, V79 cells were incubated with the metabolites produced by hepatocytes treated with different concentrations of semi-synthetic crotonin. After a 4-h incubation, semi-synthetic crotonin had an IC50 = 500 muM in the MTT reduction and neutral red uptake tests and an IC50 = 370 muM in nucleic acid content test. The substance had significant antiulcerogenic activity in all models studied, suggesting the presence of a possible antisecretory effect combined with a cytoprotective effect. For this reason, the effect of semi-synthetic crotonin was also evaluated on biochemical parameters of gastric juice and gastric wall mucus, both obtained from pylorus-ligated mice. No significant differences were observed in these parameters between semi-synthetic crotonin-treated and control animals. The results obtained with semi-synthetic crotonin are promising, with a significant preventive effect against gastric ulcer induced by different agents. Our data also show that semi-synthetic crotonin was less toxic than dehydrocrotonin and that the cytotoxic effects decreases with the time that isolated hepatocytes were in culture. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of three new derivatives from dehydrocrotonin (DHC-compound I) on gastric damage indifferent animal models including gastric ulceration induced by a necrotic agent and hypothermic restrained-stress was studied: compound 11 (produced by reducing the cyclohexenone moiety of DHC with NaBH4): compound III (produced by reducing the carbonyls with LiAlH4); and compound IV (produced by transforming the lactone moiety into an amide). Their structures were confirmed on the basis of chemical and physicochemical evidence. When previously administered (p.o.) at a dose of 100 mg/kg, compound II significantly (P < 0.01) reduced gastric injury induced by HCl/ethanol (78%) and indomethacin (88%) better than did reference compound 1 (48 and 43%, respectively). But the anti-ulcerogenic activity of compound II was completely abolished by the stress-induced ulcer. Reduction of carbonyls with LiAlH4 (compound 111) caused decreased activity, markedly when no protective effect in any of the models was applied (P > 0.05). However, compound IV, in which the lactone moiety was changed into an amide. when administered at the same dose (100 mg/kg, p.o.), was more effective. The presence of a lactone moiety or Michael acceptor is probably essential for the anti-ulcerogenic effect of these compounds. (C) 2003 Elsevier B.V. Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous natural compounds have a potential for therapeutic applications, but may have to be chemically modified to alter toxic side effects. We investigated structural parameters that could affect the cytotoxicity of isocoumarins similar to 9,10-dihydroxy-5,7-dimethoxy-1H-naphtho(2,3c)pyran-1-one (paepalantine 1). Paepalantine 1 has antimicrobial activity, as well as significant in vitro cytotoxic effects in the McCoy cell line. Two other natural and two semi-synthetic isocoumarins with similar structures obtained from the capitula of Paepalanthus bromelioides were tested on the same cell line by the neutral red assay. Substitution of the 9 and/or 10-OH group made these compounds less cytotoxic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The construction of synthetic cells is one of the major goals of bioengineering. The most successful approach consists in the encapsulation of biochemical materials (DNA, RNA, enzymes, etc.) inside lipid vesicles (liposomes), mimicking a cell structure. In this contribution, that also aims at introducing the reader to 'chemical synthetic biology,' we describe the current state of the art of 'semi-synthetic minimal cells' (SSMCs), namely, cell-like structures containing the minimal number of biological compounds that are required to reconstruct a function of interest. We will first describe how the concept of the minimal cell was originated and its relation with the theory of autopoiesis, then we review the most advanced results focused on genetic/metabolic networks inside liposomes. Next, we emphasize that relevance of physical aspects (too often neglected) that impact on the solute entrapment process, and finally we discuss new technological trends in SSMC research that will probably allow their future use in biotechnology. © 2013 Copyright © 2013 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work is described a complete H-1 and C-13 NMR analysis for a group of four sesquiterpene lactones, three previously unknown. The unequivocal assignments were achieved by H-1 NMR, C-13{H-1} NMR, gCOSY. gHMQC, gHMBC and NOESY experiments and no ambiguities were left behind. All hydrogen coupling constants were measured, clarifying all hydrogen signals multiplicities. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Industrial production of semi-synthetic cephalosporins by Penicillium chrysogenum requires supplementation of the growth media with the side-chain precursor adipic acid. In glucose-limited chemostat cultures of P. chrysogenum, up to 88% of the consumed adipic acid was not recovered in cephalosporinrelated products, but used as an additional carbon and energy source for growth. This low efficiency of side-chain precursor incorporation provides an economic incentive for studying and engineering the metabolism of adipic acid in P. cluysogenum. Chemostat-based transcriptome analysis in the presence and absence of adipic acid confirmed that adipic acid metabolism in this fungus occurs via beta-oxidation. A set of 52 adipate-responsive genes included six putative genes for acyl-CoA oxidases and dehydrogenases, enzymes responsible for the first step of beta-oxidation. Subcellular localization of the differentially expressed acyl-CoA oxidases and dehydrogenases revealed that the oxidases were exclusively targeted to peroxisomes, while the dehydrogenases were found either in peroxisomes or in mitochondria. Deletion of the genes encoding the peroxisomal acyl-CoA oxidase Pc20g01800 and the mitochondrial acyl-CoA dehydrogenase Pc20g07920 resulted in a 1.6- and 3.7-fold increase in the production of the semi-synthetic cephalosporin intermediate adipoyl-6-APA, respectively. The deletion strains also showed reduced adipate consumption compared to the reference strain, indicating that engineering of the first step of beta-oxidation successfully redirected a larger fraction of adipic acid towards cephalosporin biosynthesis. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The physico-chemical characterization, structure-pharmacokinetic and metabolism studies of new semi synthetic analogues of natural bile acids (BAs) drug candidates have been performed. Recent studies discovered a role of BAs as agonists of FXR and TGR5 receptor, thus opening new therapeutic target for the treatment of liver diseases or metabolic disorders. Up to twenty new semisynthetic analogues have been synthesized and studied in order to find promising novel drugs candidates. In order to define the BAs structure-activity relationship, their main physico-chemical properties (solubility, detergency, lipophilicity and affinity with serum albumin) have been measured with validated analytical methodologies. Their metabolism and biodistribution has been studied in “bile fistula rat”, model where each BA is acutely administered through duodenal and femoral infusion and bile collected at different time interval allowing to define the relationship between structure and intestinal absorption and hepatic uptake ,metabolism and systemic spill-over. One of the studied analogues, 6α-ethyl-3α7α-dihydroxy-5β-cholanic acid, analogue of CDCA (INT 747, Obeticholic Acid (OCA)), recently under approval for the treatment of cholestatic liver diseases, requires additional studies to ensure its safety and lack of toxicity when administered to patients with a strong liver impairment. For this purpose, CCl4 inhalation to rat causing hepatic decompensation (cirrhosis) animal model has been developed and used to define the difference of OCA biodistribution in respect to control animals trying to define whether peripheral tissues might be also exposed as a result of toxic plasma levels of OCA, evaluating also the endogenous BAs biodistribution. An accurate and sensitive HPLC-ES-MS/MS method is developed to identify and quantify all BAs in biological matrices (bile, plasma, urine, liver, kidney, intestinal content and tissue) for which a sample pretreatment have been optimized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os compostos polifenólicos constituem uma classe de metabolitos secundários de plantas, mas existe também uma enorme quantidade de derivados sintéticos ou semi-sintéticos contendo múltiplas unidades fenólicas. Estes compostos apresentam importantes características biológicas, que dependem das suas estruturas básicas. Certos derivados desta família de compostos, tais como flavonoides, cromonas e cumarinas contribuem para os benefícios da dieta humana, e partilham o núcleo de benzopiran-(2 e 4)-ona ou benzofuran-3-ona. A presente dissertação inclui uma introdução geral e três capítulos que descrevem as novas rotas sintéticas estabelecidas para a preparação de novos híbridos de diversos compostos polifenólicos, assim como a sua elucidação estrutural e termina com a presentação dos resultados da avaliação biológica desses mesmos compostos. No segundo capítulo discute-se a preparação de híbridos de pirimidina- e imidazolidina-polifenóis, especialmente a síntese diastereoseletiva de novos híbridos benzofuran-3-ona-hidantoína e derivados de uracilo. A rota sintética envolve a ação de carbodiimidas sobre os ácidos cromona-(2- e 3)-carboxílicos num só passo ou em dois passos sequenciais, catalisada por uma base orgânica ou inorgânica. O terceiro capítulo descreve reações do tipo adições conjugadas 1,4 - hetero-ciclisações em cascata de compostos 1,3-dicarbonílicos em ácido cromona-3-carboxílico catalisadas por uma base orgânica, que originaram novas cromonas, cromanonas e flavonas polissubstituídas. As bispiranonas [bispiran-2 e 4)-onas] foram elaboradas numa reacção de acoplamento da 4-hidroxicumarina ou da lactona do ácido triacético com o ácido cromona-3-carboxílico ou precursores formil-funcionalizados (ω-formil-2’-hydroxy acetofenonas e cromona-3-carbaldeídos) utilizando organocatálise básica. Finalmente, alargou-se o estudo das adições conjugadas 1,4 para uma variedade de 4-hidroxipiran-2-onas e cetonas α,β-insaturadas para originar novos análogos de warfarina. Obteve-se uma variedade de estruturas complexas por hibridação das unidades de 4-hidroxicumarina ou da lactona do ácido triacético com os novos derivados de cromonas polissubstituídas. Todos as reações foram executadas em condições suaves e ambientalmente favoráveis, utilizando a 4-pirrolidinopiridina como organocatalisador básico. As estruturas dos novos híbridos polifenólicos foram caracterizados por técnicas espectroscópicas de alta resolução, incluindo espectroscopia de ressonância magnética nuclear (1D e 2D) e por difractometria de raios-X, que nos permitiram resolver o complexidade estrutural dos compostos sintetizados. O quarto capítulo apresenta os resultados da avaliação biológica obtidos com os híbridos polifenólicos sintetizados neste trabalho, mostrando a possibilidade de seu envolvimento na terapia do cancro. A maioria dos compostos foram avaliados quanto ao seu efeito sobre a citotoxicidade e proliferação de células leucémicas e ao seu envolvimento na regulação de via pró-inflamatória NF-kB, na qual, os híbridos de biscumarinas exibiram actividades elevadas (IC50 = 6-19 μM para inibição de NF-kB depois de 8 horas de incubação e IC50 = 15-39 μM para efeitos citotóxicos em células cancerosas, após 24 horas de incubação). Uma inibição moderada das enzimas HDAC e Cdc25 foi induzida pelos derivados de benzofuran-3-ona-hidantoína. Catorze dos novos derivados polifenólicos polissubstituídos, tendo como estrutura básica a benzopiran-4-ona, foram avaliados pela sua actividade quimiopreventiva do cancro mediada pela indução de sinalização citoprotectora Nrf2 (fator 2 relacionado com o fator nuclear da proteína E2) e capacidade para inibir a proliferação das células de cancro da mama. Os derivados da classe das cromanonas foram identificados como os indutores mais potentes da actividade Nrf2. As concentrações necessárias para aumentar a actividade de luciferase em 10 vezes (C10) foram de 2,8-21,3 μM. Todos os novos híbridos polifenólicos que apresentam atividade citotóxica e anti-proliferativa não afectam o crescimento de células saudáveis periféricas do sangue (PBMC) (IC50 > 50 μM), indicando a sua seletividade para as células cancerosas e sugerindo que alguns deles são estruturalmente interessantes para posteriores análises. A avaliação da atividade antioxidante utilizando os testes do radical livre DPPH e o poder redutor do ião férrico FRAP foram realizados em algumas estruturas híbridas polifenólicas.