927 resultados para Semi-solid state
Resumo:
defect metal alloy strip when thixorolling directly from the semi-solid state. To facilitate the study lead/tin alloys were chosen for their relatively low operating temperature. The objective is to extrapolate these findings to the higher temperature aluminium, alloys. Three alloys (70%Pb30%Sn, 60%Pb-40%Sn, 50%Pb-50%wtSn) were used particularly to study the influence of the solidification interval. The equipment consists of a two roll mill arranged as an upper and lower roller, where both rollers are driven at a controlled speed. The lower roller is fed with semi solid alloy through a ceramic nozzle attached to the lower end of a cooling slope. Several types of nozzle and their position at the roller were tested. This produced different solidifications and consequently different finished strip. The alloys were first cast and then poured onto the cooling slope through a tundish in order to create a continuous laminar flow of slurry and uniformity of metal strip quality. The pouring was tested at different positions along the slope. The cooling slope was coated with colloidal graphite to promote a smooth slurry flow and avoid the problem of adherence and premature solidification. The metallic slurry not only cools along the slope but is also initially super-cooled to a mush by the lower roller whilst at room temperatures, thus enabling thixorolling. It was also found that the nozzle position could be adjusted to enable the upper roller to also contribute to the solidification of the metallic slurry. However the rollers and the cooling slope naturally heat up. Temperature distribution in these zones was analysed by means of three thermocouples positioned along the cooling slope and a fourth in the base of the semi solid pool within the nozzle. The objective being to design an optimum pouring and cooling system. The formed strip was cooled down to room temperature with a shower of water. Microstructures of the thixorolling process were analysed. The differences in solidification conditions resulted in differing qualities of finished strip and corresponding defect types, all of which are a serious quality issue for the rolled product.
Resumo:
The main goal in this work is to conduct a quantitative analysis of the mechanical stir casting process for obtaining particulate metal matrix composites. A combined route of stirring at semi-solid state followed by stirring at liquid state is proposed. A fractional factorial design was developed to investigate the influence and interactions of factors as: time, rotation, initial fraction and particle size, on the incorporated fraction. The best incorporations were obtained with all factors at high levels, as well as that very long stirring periods have no strong influence being particle size and rotation the most important factors on the incorporated fraction. Particle wetting occurs during stirring at semisolid state, highlighting the importance of the interactions between particles and the alloy globularized phase. The role of the alloying element Mg as a wettability-promoting agent is discussed. The shear forces resulting from the stirring system is emphasized and understood as the effect of rotation itself added to the propeller blade geometry.
Resumo:
A broad variety of solid state NMR techniques were used to investigate the chain dynamics in several polyethylene (PE) samples, including ultrahigh molecular weight PEs (UHMW-PEs) and low molecular weight PEs (LMW-PEs). Via changing the processing history, i.e. melt/solution crystallization and drawing processes, these samples gain different morphologies, leading to different molecular dynamics. Due to the long chain nature, the molecular dynamics of polyethylene can be distinguished in local fluctuation and long range motion. With the help of NMR these different kinds of molecular dynamics can be monitored separately. In this work the local chain dynamics in non-crystalline regions of polyethylene samples was investigated via measuring 1H-13C heteronuclear dipolar coupling and 13C chemical shift anisotropy (CSA). By analyzing the motionally averaged 1H-13C heteronuclear dipolar coupling and 13C CSA, the information about the local anisotropy and geometry of motion was obtained. Taking advantage of the big difference of the 13C T1 relaxation time in crystalline and non-crystalline regions of PEs, the 1D 13C MAS exchange experiment was used to investigate the cooperative chain motion between these regions. The different chain organizations in non-crystalline regions were used to explain the relationship between the local fluctuation and the long range motion of the samples. In a simple manner the cooperative chain motion between crystalline and non-crystalline regions of PE results in the experimentally observed diffusive behavior of PE chain. The morphological influences on the diffusion motion have been discussed. The morphological factors include lamellar thickness, chain organization in non-crystalline regions and chain entanglements. Thermodynamics of the diffusion motion in melt and solution crystallized UHMW-PEs is discussed, revealing entropy-controlled features of the chain diffusion in PE. This thermodynamic consideration explains the counterintuitive relationship between the local fluctuation and the long range motion of the samples. Using the chain diffusion coefficient, the rates of jump motion in crystals of the melt crystallized PE have been calculated. A concept of "effective" jump motion has been proposed to explain the difference between the values derived from the chain diffusion coefficients and those in literatures. The observations of this thesis give a clear demonstration of the strong relationship between the sample morphology and chain dynamics. The sample morphologies governed by the processing history lead to different spatial constraints for the molecular chains, leading to different features of the local and long range chain dynamics. The knowledge of the morphological influence on the microscopic chain motion has many implications in our understanding of the alpha-relaxation process in PE and the related phenomena such as crystal thickening, drawability of PE, the easy creep of PE fiber, etc.
Resumo:
Dissertação de mestrado em Bioengenharia
Resumo:
Silicon carbide, which has many polytypic modifications of a very simple and very symmetric structure, is an excellent model system for exploring, the relationship between chemical shift, long-range dipolar shielding, and crystal structure in network solids. A simple McConnell equation treatment of bond anisotropy effects in a poly type predicts chemical shifts for silicon and carbon sites which agree well with the experiment, provided that contributions from bonds up to 100 A are included in the calculation. The calculated chemical shifts depend on three factors: the layer stacking sequence, electrical centre of gravity, and the spacings between silicon and carbon layers. The assignment of peaks to lattice sites is proved possible for three polytypes (6H, 15R, and 3C). The fact that the calculated chemical shifts are very sensitive to layer spacings provides us a potential way to detennine and refine a crystal structure. In this work, the layer spacings of 6H SiC have been calculated and are within X-ray standard deviations. Under this premise, the layer spacings of 15R have been detennined. 29Si and 13C single crystal nmr studies of 6H SiC polytype indicate that all silicons and carbons are magnetically anisotropic. The relationship between a magnetic shielding tensor component and layer spacings has been derived. The comparisons between experimental and semi-empirical chemical shielding tensor components indicate that the paramagnetic shielding of silicon should be included in the single crystal chemical shift calculation.
Resumo:
In this report, the application of a class of separated local field NMR experiments named dipolar chemical shift correlation (DIPSHIFT) for probing motions in the intermediate regime is discussed. Simple analytical procedures based on the Anderson-Weiss (AW) approximation are presented. In order to establish limits of validity of the AW based formulas, a comparison with spin dynamics simulations based on the solution of the stochastic Liouville-von-Neumann equation is presented. It is shown that at short evolution times (less than 30% of the rotor period), the AW based formulas are suitable for fitting the DIPSHIFT curves and extracting kinetic parameters even in the case of jumplike motions. However, full spin dynamics simulations provide a more reliable treatment and extend the frequency range of the molecular motions accessible by DIPSHIFT experiments. As an experimental test, molecular jumps of imidazol methyl sulfonate and trimethylsulfoxonium iodide, as well as the side-chain motions in the photoluminescent polymer poly[2-methoxy-5-(2(')-ethylhexyloxy)-1,4-phenylenevinylene], were characterized. Possible extensions are also discussed. (c) 2008 American Institute of Physics.
Resumo:
The present work shows study of the CO(2) capture by amidines DBN and PMDBD using (13)C solid-state NMR and thermal techniques. The solid state (13)C NMR analyses demonstrate the formation of a single PMDBD-CO(2) product which was assigned to stable bicarbonate. In the case of DBN, it is shown that two DBN-CO(2) products are formed, which are suggested to be stable bicarbonate and unstable carbamate. The role of water in the DBN-CO(2) capture as well as the stability of the products to environmental moisture was also investigated. The results suggest that the carbamate formation is favored in dry DBN, but in the presence of water it decompose to form bicarbonate. Thermal analysis shows a good gravimetric CO(2) absorption of DBN. Release of CO(2) was found to be almost quantitative from the PMDBDH(+) bicarbonate about 110 degrees C.
Resumo:
Enzyme production is a growing field in biotechnology and increasing attention has been devoted to the solid-state fermentation (SSF) of lignocellulosic biomass for production of industrially relevant lignocellulose deconstruction enzymes, especially manganese-peroxidase (MnP), which plays a crucial role in lignin degradation. However, there is a scarcity of studies regarding extraction of the secreted metabolities that are commonly bound to the fermented solids, preventing their accurate detection and limiting recovery efficiency. In the present work, we assessed the effectiveness of extraction process variables (pH, stirring rate, temperature, and extraction time) on recovery efficiency of manganese-peroxidase (MnP) obtained by SSF of eucalyptus residues using Lentinula edodes using statistical design of experiments. The results from this study indicated that of the variables studied, pH was the most significant (p < 0.05%) parameter affecting MnP recovery yield, while temperature, extraction time, and stirring rate presented no statistically significant effects in the studied range. The optimum pH for extraction of MnP was at 4.0-5.0, which yielded 1500-1700 IU kg (1) of enzyme activity at extraction time 4-5 h, under static condition at room temperature. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Inclusion complexes of Lippia sidoides essential oil and beta-cyclodextrin were obtained by slurry method and its solid powdered form was prepared using spray drying. The influence of the spray drying, as well as the different essential oil:beta-cyclodextrin ratio on the characteristics of the final product was investigated. With regard to the total oil retention 1:10 mass/mass ratio as optimal was found between the essential oil and beta-cyclodextrin. Thermoanalytical techniques (TG, EGD, TG-MS) were used to support the formation of inclusion complex and to examine their physicochemical properties after accelerated storage conditions. It may be assumed that the thermal properties of the complexes were influenced not only by the different essential oil/beta-cyclodextrin ratio but also by the storage conditions. In the aspect of their thermal stabilities, complex prepared with 1:10 m/m ratio (essential oil: beta-cyclodextrin) was the most stable one.
Resumo:
The maximum O-2 uptake by Rhizopus oligosporus grown in a 200 litre rotating drum bioreactor at 0.5 rpm ranged from 6.7 to 7.6 mmol per min per kg initial dry substrate (IDS), for runs done with 4 baffles each 17 cm wide, and 12 baffles each 5 cm wide. Without baffles, the maximum O-2 uptake rate at 5 rpm was 6.9 mmol/(min.kg IDS), compared to 5.1 mmol/(min.kg IDS) obtained at 0.5 rpm. Therefore O-2 supply is adequate in rotating drum bioreactors as long as slumping flow regimes of the substrate bed are avoided.
Resumo:
Aspergillus foetidus ACR I 3996 (=FRR 3558) and three strains of Aspergillus niger ACM 4992 (=ATCC 9142), ACM 4993 (=ATCC 10577), ACM 4994 (=ATCC 12846) were compared for the production of citric acid from pineapple peel in solid-state fermentation. A. niger ACM 4992 produced the highest amount of citric acid, with a yield of 19.4 g of citric acid per 100 g of dry fermented pineapple waste under optimum conditions, representing a yield of 0.74 g citric acid/g sugar consumed. Optimal conditions were 65% (w/w) initial moisture content, 3% (v/w) methanol, 30 degrees C, an unadjusted initial pH of 3.4, a particle size of 2 mm and 5 ppm Fe2+. Citric acid production was best in flasks, with lower yields being obtained in tray and rotating drum bioreactors.
Resumo:
The development of large-scale solid-stale fermentation (SSF) processes is hampered by the lack of simple tools for the design of SSF bioreactors. The use of semifundamental mathematical models to design and operate SSF bioreactors can be complex. In this work, dimensionless design factors are used to predict the effects of scale and of operational variables on the performance of rotating drum bioreactors. The dimensionless design factor (DDF) is a ratio of the rate of heat generation to the rate of heat removal at the time of peak heat production. It can be used to predict maximum temperatures reached within the substrate bed for given operational variables. Alternatively, given the maximum temperature that can be tolerated during the fermentation, it can be used to explore the combinations of operating variables that prevent that temperature from being exceeded. Comparison of the predictions of the DDF approach with literature data for operation of rotating drums suggests that the DDF is a useful tool. The DDF approach was used to explore the consequences of three scale-up strategies on the required air flow rates and maximum temperatures achieved in the substrate bed as the bioreactor size was increased on the basis of geometric similarity. The first of these strategies was to maintain the superficial flow rate of the process air through the drum constant. The second was to maintain the ratio of volumes of air per volume of bioreactor constant. The third strategy was to adjust the air flow rate with increase in scale in such a manner as to maintain constant the maximum temperature attained in the substrate bed during the fermentation. (C) 2000 John Wiley & Sons, Inc.
Resumo:
X-Ray crystal structures, C-13 NMR spectra and theoretical calculations (B3LYP/6-31G*) are reported for the mesoionic (zwitterionic) pyridopyrimidinylium- and pyridooxazinyliumolates 2a, 3a and 5a,b as well as the enol ether 11b and the enamine 11c. The 1-NH compounds like 1a, 2a and 3a exist in the mesoionic form in the crystal and in solution, but the OH tautomers such as 1b and 2b dominate in the gas phase as revealed by the Ar matrix IR spectra in conjunction with DFT calculations. All data indicate that the mesoionic compounds can be regarded as intramolecular pyridine-ketene zwitterions (cf. 16 --> 17) with a high degree of positive charge on the pyridinium nitrogen, a long pyridinium N-CO bond (ca. 1.44-1.49 Angstrom), and normal C=O double bonds (ca. 1.22 Angstrom). All mesoionic compounds exhibit a pronounced tilting of the olate C=O groups (the C=O groups formally derived from a ketene) towards the pyridinium nitrogen, giving NCO angles of 110-118 degrees. Calculations reveal a hydrogen bond with 6-CH, analogous to what is found in ketene-pyridine zwitterions and the C3O2-pyridine complex. The 2-OH tautomers of type 1b, 2b, and 11 also show a high degree of zwitterionic character as indicated by the canonical structures 11 12.
Resumo:
The present work describes the crystal structure, vibrational spectra, and theoretical calculations of ammonium salts of 3,5-bis-(dicyanomethylene)cyclopentane-1,2,4-trionate, (NH(4))(2)(C(11)N(4)O(3)) [(NH(4))(2)CV], also known as ammonium croconate violet. This compound crystallizes in triclinic P (1) over bar and contains two water molecules per unit formula. The crystal packing is stabilized by hydrogen bonds involving water molecules and ammonium cations, giving rise to a 3D polymeric arrangement. In this structure, a pi-stacking interaction is not observed, as the smaller centroid-centroid distance is 4.35 angstrom. Ab initio electronic structure calculations under periodic boundary conditions were performed to predict vibrational and electronic properties. The vibrational analysis was used to assist the assignments of the Raman and infrared bands. The solid structure was optimized and characterized as a minimum in the potential-energy surface. The stabilizing intermolecular hydrogen bonds in the crystal Structure were characterized by difference charge-density analysis. The analysis of the density of states of (NH(4))(2)CV gives an energy gap of 1.4 eV with a significant contribution of carbon and nitrogen 2p states for valence and conduction bands.