969 resultados para Semi-parametric models
Resumo:
Recent work shows that a low correlation between the instruments and the included variables leads to serious inference problems. We extend the local-to-zero analysis of models with weak instruments to models with estimated instruments and regressors and with higher-order dependence between instruments and disturbances. This makes this framework applicable to linear models with expectation variables that are estimated non-parametrically. Two examples of such models are the risk-return trade-off in finance and the impact of inflation uncertainty on real economic activity. Results show that inference based on Lagrange Multiplier (LM) tests is more robust to weak instruments than Wald-based inference. Using LM confidence intervals leads us to conclude that no statistically significant risk premium is present in returns on the S&P 500 index, excess holding yields between 6-month and 3-month Treasury bills, or in yen-dollar spot returns.
Resumo:
The spatial distribution of self-employment in India: evidence from semiparametric geoadditive models, Regional Studies. The entrepreneurship literature has rarely considered spatial location as a micro-determinant of occupational choice. It has also ignored self-employment in developing countries. Using Bayesian semiparametric geoadditive techniques, this paper models spatial location as a micro-determinant of self-employment choice in India. The empirical results suggest the presence of spatial occupational neighbourhoods and a clear north–south divide in self-employment when the entire sample is considered; however, spatial variation in the non-agriculture sector disappears to a large extent when individual factors that influence self-employment choice are explicitly controlled. The results further suggest non-linear effects of age, education and wealth on self-employment.
Resumo:
We consider a mixture model approach to the regression analysis of competing-risks data. Attention is focused on inference concerning the effects of factors on both the probability of occurrence and the hazard rate conditional on each of the failure types. These two quantities are specified in the mixture model using the logistic model and the proportional hazards model, respectively. We propose a semi-parametric mixture method to estimate the logistic and regression coefficients jointly, whereby the component-baseline hazard functions are completely unspecified. Estimation is based on maximum likelihood on the basis of the full likelihood, implemented via an expectation-conditional maximization (ECM) algorithm. Simulation studies are performed to compare the performance of the proposed semi-parametric method with a fully parametric mixture approach. The results show that when the component-baseline hazard is monotonic increasing, the semi-parametric and fully parametric mixture approaches are comparable for mildly and moderately censored samples. When the component-baseline hazard is not monotonic increasing, the semi-parametric method consistently provides less biased estimates than a fully parametric approach and is comparable in efficiency in the estimation of the parameters for all levels of censoring. The methods are illustrated using a real data set of prostate cancer patients treated with different dosages of the drug diethylstilbestrol. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
We present a real data set of claims amounts where costs related to damage are recorded separately from those related to medical expenses. Only claims with positive costs are considered here. Two approaches to density estimation are presented: a classical parametric and a semi-parametric method, based on transformation kernel density estimation. We explore the data set with standard univariate methods. We also propose ways to select the bandwidth and transformation parameters in the univariate case based on Bayesian methods. We indicate how to compare the results of alternative methods both looking at the shape of the overall density domain and exploring the density estimates in the right tail.
Resumo:
Understanding the dynamics of interest rates and the term structure has important implications for issues as diverse as real economic activity, monetary policy, pricing of interest rate derivative securities and public debt financing. Our paper follows a longstanding tradition of using factor models of interest rates but proposes a semi-parametric procedure to model interest rates.
Resumo:
In this paper, we propose a class of ACD-type models that accommodates overdispersion, intermittent dynamics, multiple regimes, and sign and size asymmetries in financial durations. In particular, our functional coefficient autoregressive conditional duration (FC-ACD) model relies on a smooth-transition autoregressive specification. The motivation lies on the fact that the latter yields a universal approximation if one lets the number of regimes grows without bound. After establishing that the sufficient conditions for strict stationarity do not exclude explosive regimes, we address model identifiability as well as the existence, consistency, and asymptotic normality of the quasi-maximum likelihood (QML) estimator for the FC-ACD model with a fixed number of regimes. In addition, we also discuss how to consistently estimate using a sieve approach a semiparametric variant of the FC-ACD model that takes the number of regimes to infinity. An empirical illustration indicates that our functional coefficient model is flexible enough to model IBM price durations.
Resumo:
OBJECTIVE: To demonstrate the application of causal inference methods to observational data in the obstetrics and gynecology field, particularly causal modeling and semi-parametric estimation. BACKGROUND: Human immunodeficiency virus (HIV)-positive women are at increased risk for cervical cancer and its treatable precursors. Determining whether potential risk factors such as hormonal contraception are true causes is critical for informing public health strategies as longevity increases among HIV-positive women in developing countries. METHODS: We developed a causal model of the factors related to combined oral contraceptive (COC) use and cervical intraepithelial neoplasia 2 or greater (CIN2+) and modified the model to fit the observed data, drawn from women in a cervical cancer screening program at HIV clinics in Kenya. Assumptions required for substantiation of a causal relationship were assessed. We estimated the population-level association using semi-parametric methods: g-computation, inverse probability of treatment weighting, and targeted maximum likelihood estimation. RESULTS: We identified 2 plausible causal paths from COC use to CIN2+: via HPV infection and via increased disease progression. Study data enabled estimation of the latter only with strong assumptions of no unmeasured confounding. Of 2,519 women under 50 screened per protocol, 219 (8.7%) were diagnosed with CIN2+. Marginal modeling suggested a 2.9% (95% confidence interval 0.1%, 6.9%) increase in prevalence of CIN2+ if all women under 50 were exposed to COC; the significance of this association was sensitive to method of estimation and exposure misclassification. CONCLUSION: Use of causal modeling enabled clear representation of the causal relationship of interest and the assumptions required to estimate that relationship from the observed data. Semi-parametric estimation methods provided flexibility and reduced reliance on correct model form. Although selected results suggest an increased prevalence of CIN2+ associated with COC, evidence is insufficient to conclude causality. Priority areas for future studies to better satisfy causal criteria are identified.
Resumo:
Research Masters
Resumo:
Summary
Resumo:
The goal of this paper is to introduce a class of tree-structured models that combines aspects of regression trees and smooth transition regression models. The model is called the Smooth Transition Regression Tree (STR-Tree). The main idea relies on specifying a multiple-regime parametric model through a tree-growing procedure with smooth transitions among different regimes. Decisions about splits are entirely based on a sequence of Lagrange Multiplier (LM) tests of hypotheses.
Resumo:
Includes bibliography
Resumo:
We investigate theoretical and observational aspects of a time-dependent parameterization for the dark energy equation of state w(z), which is a well behaved function of the redshift z over the entire cosmological evolution, i.e., z is an element of [-1, infinity). By using a theoretical algorithm of constructing the quintes-sence potential directly from the w(z) function, we derive and discuss the general features of the resulting potential for the cases in which dark energy is separately conserved and when it is coupled to dark matter. Since the parameterization here discussed allows us to divide the parametric plane in defined regions associated to distinct classes of dark energy models, we use some of the most recent observations from type Ia supernovae, baryon acoustic oscillation peak and Cosmic Microwave Background shift parameter to check which class is observationally preferred. We show that the largest portion of the confidence contours lies into the region corresponding to a possible crossing of the so-called phantom divide line at some point of the cosmic evolution.
Resumo:
The Scilla rock avalanche occurred on 6 February 1783 along the coast of the Calabria region (southern Italy), close to the Messina Strait. It was triggered by a mainshock of the Terremoto delle Calabrie seismic sequence, and it induced a tsunami wave responsible for more than 1500 casualties along the neighboring Marina Grande beach. The main goal of this work is the application of semi-analtycal and numerical models to simulate this event. The first one is a MATLAB code expressly created for this work that solves the equations of motion for sliding particles on a two-dimensional surface through a fourth-order Runge-Kutta method. The second one is a code developed by the Tsunami Research Team of the Department of Physics and Astronomy (DIFA) of the Bologna University that describes a slide as a chain of blocks able to interact while sliding down over a slope and adopts a Lagrangian point of view. A wide description of landslide phenomena and in particular of landslides induced by earthquakes and with tsunamigenic potential is proposed in the first part of the work. Subsequently, the physical and mathematical background is presented; in particular, a detailed study on derivatives discratization is provided. Later on, a description of the dynamics of a point-mass sliding on a surface is proposed together with several applications of numerical and analytical models over ideal topographies. In the last part, the dynamics of points sliding on a surface and interacting with each other is proposed. Similarly, different application on an ideal topography are shown. Finally, the applications on the 1783 Scilla event are shown and discussed.