996 resultados para Semi-active suspension
Resumo:
In this paper we study the behavior of a semi-active suspension witch external vibrations. The mathematical model is proposed coupled to a magneto rheological (MR) damper. The goal of this work is stabilize of the external vibration that affect the comfort and durability an vehicle, to control these vibrations we propose the combination of two control strategies, the optimal linear control and the magneto rheological (MR) damper. The optimal linear control is a linear feedback control problem for nonlinear systems, under the optimal control theory viewpoint We also developed the optimal linear control design with the scope in to reducing the external vibrating of the nonlinear systems in a stable point. Here, we discuss the conditions that allow us to the linear optimal control for this kind of non-linear system.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This research focuses on developing active suspension optimal controllers for two linear and non-linear half-car models. A detailed comparison between quarter-car and half-car active suspension approaches is provided for improving two important scenarios in vehicle dynamics, i.e. ride quality and road holding. Having used a half-car vehicle model, heave and pitch motion are analyzed for those scenarios, with cargo mass as a variable. The governing equations of the system are analysed in a multi-energy domain package, i.e., 20-Sim. System equations are presented in the bond-graph language to facilitate calculation of energy usage. The results present optimum set of gains for both ride quality and road holding scenarios are the gains which has derived when maximum allowable cargo mass is considered for the vehicle. The energy implications of substituting passive suspension units with active ones are studied by considering not only the energy used by the actuator, but also the reduction in energy lost through the passive damper. Energy analysis showed less energy was dissipated in shock absorbers when either quarter-car or half-car controllers were used instead of passive suspension. It was seen that more energy could be saved by using half-car active controllers than the quarter-car ones. Results also proved that using active suspension units, whether quarter-car or half-car based, under those realistic limitations is energy-efficient and suggested.
Resumo:
This paper presents a development of a semi-active prosthetic knee, which can work in both active and passive modes based on the energy required during the gait cycle of various activities of daily livings (ADLs). The prosthetic limb is equipped with various sensors to measure the kinematic and kinetic parameters of both prosthetic limbs. This prosthetic knee is designed to be back-drivable in passive mode to provide a potential use in energy regeneration when there negative energy across the knee joint. Preliminary test has been performed on transfemoral amputee in passive mode to provide some insight to the amputee/prosthesis interaction and performance with the designed prosthetic knee.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
This paper presents both the theoretical and the experimental approaches of the development of a mathematical model to be used in multi-variable control system designs of an active suspension for a sport utility vehicle (SUV), in this case a light pickup truck. A complete seven-degree-of-freedom model is successfully quickly identified, with very satisfactory results in simulations and in real experiments conducted with the pickup truth. The novelty of the proposed methodology is the use of commercial software in the early stages of the identification to speed up the process and to minimize the need for a large number of costly experiments. The paper also presents major contributions to the identification of uncertainties in vehicle suspension models and in the development of identification methods using the sequential quadratic programming, where an innovation regarding the calculation of the objective function is proposed and implemented. Results from simulations of and practical experiments with the real SUV are presented, analysed, and compared, showing the potential of the method.
Resumo:
This paper presents the control strategies of nonlinear vehicle suspension using a magnetorheological (MR) damper. We used two different approaches for modeling and control of the mechanical and electrical parts of the suspension systems with the MR damper. First, we have formulated and resolved the control problem in order to design the linear feedback dumping force controller for a nonlinear suspension system. Then the values of the control dumping force functions were transformed into electrical control signals by the application of a fuzzy logic control method. The numerical simulations were provided in order to show the effectiveness of this method for the semi-active control of the quarter-car suspension.
Resumo:
The present work investigates the nonlinear response of a half-car model. The disturbances of the road are assumed to be sinusoidal. After constructing the bifurcation diagram, we use the 0-1 test to identify chaotic motions. The main objective of this study is to eliminate chaotic behavior of the chassis and reduce its vibrations. To accomplish this, a semi-active vehicle suspension control system, using magneto-rheological dampers, is proposed. The proposed semi-active control strategy consists of two nonlinear control laws: a feedforward control, and a feedback control. They are obtained by considering the SDRE (State Dependent Riccati Equation) control, where the control parameter is the voltage applied to the coils of the magneto-rheological dampers. Numerical results show that the proposed control method is effective in significantly reducing of the chassis vibration, increasing, therefore, passenger comfort.
Resumo:
O uso de materiais inteligentes em problemas de controle de vibração tem sido investigado em diversas pesquisas ao longo dos últimos anos. Apesar de que diferentes materiais inteligentes estão disponíveis, o piezelétrico tem recebido grande atenção devido à facilidade de uso como sensores, atuadores, ou ambos simultaneamente. As principais técnicas de controle usando materiais piezoelétricos são os ativos e passivos. Circuitos piezelétricos passivos são ajustados para uma frequência específica e, portanto, a largura de banda efetiva é pequena. Embora os sistemas ativos possam apresentar um bom desempenho no controle de vibração, a quantidade de energia externa e hardware adicionado são questões importantes. As técnicas SSD (Synchronized Switch Damping) foram desenvolvidas como uma alternativa aos controladores passivos e controladores ativos de vibração. Elas podem ser técnicas semi-ativas ou semi-passivas que introduzem um tratamento não linear na tensão elétrica proveniente do material piezelétrico e induz um aumento na conversão de energia mecânica para energia elétrica e, consequentemente, um aumento no efeito de amortecimento. Neste trabalho, o controle piezoelétrico semi-passivo de uma pá piezelétrica engastada é apresentado e comparado com outros controladores. O modelo não linear electromecânico de uma pá com piezocerâmicas incorporados é determinado com base no método variacional-assintótico (VAM). O sistema rotativo acoplado não linear é resolvido no domínio do tempo, utilizando um método de integração alfa-generalizado afim de garantir a estabilidade numérica. As simulações são realizadas para uma vasta gama de velocidades de rotação. Em primeiro lugar, um conjunto de resistências (variando desde a condição de curto-circuito para a condição de circuito aberto) é considerada. O efeito da resistência ótima (que resulta em máximo amortecimento) sobre o comportamento do sistema é investigado para o aumento da velocidade de rotação. Mais tarde, a técnica SSDS é utilizada para amortecer as oscilações da pá com o aumento da velocidade de rotação. Os resultados mostram que a técnica SSDS pode ser um método útil para o controle de vibrações de vigas rotativas não lineares, tais como pás de helicóptero.
Resumo:
Trabalho apresentado no 10º Congresso Nacional de Sismologia e Engenharia Sísmica, 20-22 abril de 2016, Ponta Delgada, Açores, Portugal
Resumo:
Most structure-building organisms in rocky benthic communities are surface-dependent because their energy inputs depend mainly on the surface they expose to water. Two photosynthetic strategies, divided into calcareous and non calcareous algae, strict suspension-feeders and photosynthetic suspension feeders (e.g. hermatypic corals) are the four main strategies evolutively acquired by benthic organisms. Competition between those strategies occur in relation to productivity of the different species, in such a way that, for given environmental conditions, species with a higher growth (P/B ratio) would dominate. At a worldwide scale, littoral marine benthos can he considered to fit into the four fields defined by two main axes: the first, relates to productivity and relies atrophic and oligotrophic waters and the second is defined by the degree of environmental variability or seasonality (from high to low). Coral reefs (marine ecosystems dominated by photosynthetic suspension feeders) develop in the space of oligotrophic areas with low variability, while kelp beds (marine ecosystem dominated by large, non calcareous algae) are to be found only in eutrophic places with a high variability. The space of eutrophic waters with a low variability do not has specially adapted, high structured, benthic marine ecosystems, and in these conditions opportunistic algae and animals predominate. Finally, photophilic mediterranean benthos -devoid of kelps and without hermatypic corals- typifies the field of oligotrophic areas with high variability; in its more genuine aspect, Mediterranean benthos is represented by small algae with a high percentage of calcareous thallii. In all cases strict suspension-feeders compete successfully with photosynthetic organisms only in situations of low irradiances or very high inputs of POM. In its turn, Mediterranean rocky benthos, in spite of its relative uniformity, is geographically organized along the same axes. The Gulf of Lions and the insular bottoms (Balearic Islands, for example) would correspond to the extremes of eutrophic-high variability areas and oligotrophic-low variability areas, respectively. Irradiance, nutrient and POM concentration, and hydrodynamism are the three variables which mainly affect the distribution of the different surface-dependent strategies, and thus, these parameters are of paramount interest for understanding the trophic structure of Mediterranean benthic communities. In environments non limited by light, nutrient availability, defined as the product between nutrient -POM concentration and hydrodynamism, states the dominance of calcareous versus non calcareous algae. Calcareous algae dominate in oligotrophic waters while non-calcareous algae dominate in moderately eutrophic waters. In light-limited environments, passive suspension feeders (octocorallaria, gorgonians) become dominant species if POM availability is enhanced by a high hydrodynamism (strong currents); in waters with a low charge of POM organisms of other groups, mainly active suspension feeders, predominate (sponges, bryozoans, scleractiniarians). In any case, there always exists a very variable bathymetric zone, depending on light attenuation and nutrient-POM availability, where encrusting calcareous algae strongly compete with suspension feeders (coralligenous).
Resumo:
The improvement of the dynamics of flexible manipulators like log cranes often requires advanced control methods. This thesis discusses the vibration problems in the cranes used in commercial forestry machines. Two control methods, adaptive filtering and semi-active damping, are presented. The adaptive filter uses a part of the lowest natural frequency of the crane as a filtering frequency. The payload estimation algorithm, filtering of control signal and algorithm for calculation of the lowest natural frequency of the crane are presented. The semi-active damping method is basedon pressure feedback. The pressure vibration, scaled with suitable gain, is added to the control signal of the valve of the lift cylinder to suppress vibrations. The adaptive filter cuts off high frequency impulses coming from the operatorand semi-active damping suppresses the crane?s oscillation, which is often caused by some external disturbance. In field tests performed on the crane, a correctly tuned (25 % tuning) adaptive filter reduced pressure vibration by 14-17 % and semi-active damping correspondingly by 21-43%. Applying of these methods require auxiliary transducers, installed in specific points in the crane, and electronically controlled directional control valves.
Resumo:
Travail de recherche sur le thème de l’évaluation des archives à l’ère du numérique réalisé à l’hiver 2010 dans le cadre des cours SCI6112 L’évaluation des archives sous la direction du professeur Yvon Lemay et SCI6314 Gestion avancée des services d'information sous la direction de Carole Brouillette.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)