830 resultados para Semantic metrics
Resumo:
Ontologies play a core role to provide shared knowledge models to semantic-driven applications targeted by Semantic Web. Ontology metrics become an important area because they can help ontology engineers to assess ontology and better control project management and development of ontology based systems, and therefore reduce the risk of project failures. In this paper, we propose a set of ontology cohesion metrics which focuses on measuring (possibly inconsistent) ontologies in the context of dynamic and changing Web. They are: Number of Ontology Partitions (NOP), Number of Minimally Inconsistent Subsets (NMIS) and Average Value of Axiom Inconsistencies (AVAI). These ontology metrics are used to measure ontological semantics rather than ontological structure. They are theoretically validated for ensuring their theoretical soundness, and further empirically validated by a standard test set of debugging ontologies. The related algorithms to compute these ontology metrics also are discussed. These metrics proposed in this paper can be used as a very useful complementarity of existing ontology cohesion metrics.
Resumo:
In vector space based approaches to natural language processing, similarity is commonly measured by taking the angle between two vectors representing words or documents in a semantic space. This is natural from a mathematical point of view, as the angle between unit vectors is, up to constant scaling, the only unitarily invariant metric on the unit sphere. However, similarity judgement tasks reveal that human subjects fail to produce data which satisfies the symmetry and triangle inequality requirements for a metric space. A possible conclusion, reached in particular by Tversky et al., is that some of the most basic assumptions of geometric models are unwarranted in the case of psychological similarity, a result which would impose strong limits on the validity and applicability vector space based (and hence also quantum inspired) approaches to the modelling of cognitive processes. This paper proposes a resolution to this fundamental criticism of of the applicability of vector space models of cognition. We argue that pairs of words imply a context which in turn induces a point of view, allowing a subject to estimate semantic similarity. Context is here introduced as a point of view vector (POVV) and the expected similarity is derived as a measure over the POVV's. Different pairs of words will invoke different contexts and different POVV's. Hence the triangle inequality ceases to be a valid constraint on the angles. We test the proposal on a few triples of words and outline further research.
Resumo:
The automatic disambiguation of word senses (i.e., the identification of which of the meanings is used in a given context for a word that has multiple meanings) is essential for such applications as machine translation and information retrieval, and represents a key step for developing the so-called Semantic Web. Humans disambiguate words in a straightforward fashion, but this does not apply to computers. In this paper we address the problem of Word Sense Disambiguation (WSD) by treating texts as complex networks, and show that word senses can be distinguished upon characterizing the local structure around ambiguous words. Our goal was not to obtain the best possible disambiguation system, but we nevertheless found that in half of the cases our approach outperforms traditional shallow methods. We show that the hierarchical connectivity and clustering of words are usually the most relevant features for WSD. The results reported here shed light on the relationship between semantic and structural parameters of complex networks. They also indicate that when combined with traditional techniques the complex network approach may be useful to enhance the discrimination of senses in large texts. Copyright (C) EPLA, 2012
Resumo:
Software evolution, and particularly its growth, has been mainly studied at the file (also sometimes referred as module) level. In this paper we propose to move from the physical towards a level that includes semantic information by using functions or methods for measuring the evolution of a software system. We point out that use of functions-based metrics has many advantages over the use of files or lines of code. We demonstrate our approach with an empirical study of two Free/Open Source projects: a community-driven project, Apache, and a company-led project, Novell Evolution. We discovered that most functions never change; when they do their number of modifications is correlated with their size, and that very few authors who modify each; finally we show that the departure of a developer from a software project slows the evolution of the functions that she authored.
Resumo:
Ontologies and taxonomies are widely used to organize concepts providing the basis for activities such as indexing, and as background knowledge for NLP tasks. As such, translation of these resources would prove useful to adapt these systems to new languages. However, we show that the nature of these resources is significantly different from the "free-text" paradigm used to train most statistical machine translation systems. In particular, we see significant differences in the linguistic nature of these resources and such resources have rich additional semantics. We demonstrate that as a result of these linguistic differences, standard SMT methods, in particular evaluation metrics, can produce poor performance. We then look to the task of leveraging these semantics for translation, which we approach in three ways: by adapting the translation system to the domain of the resource; by examining if semantics can help to predict the syntactic structure used in translation; and by evaluating if we can use existing translated taxonomies to disambiguate translations. We present some early results from these experiments, which shed light on the degree of success we may have with each approach
Resumo:
Abstract Idea Management Systems are web applications that implement the notion of open innovation though crowdsourcing. Typically, organizations use those kind of systems to connect to large communities in order to gather ideas for improvement of products or services. Originating from simple suggestion boxes, Idea Management Systems advanced beyond collecting ideas and aspire to be a knowledge management solution capable to select best ideas via collaborative as well as expert assessment methods. In practice, however, the contemporary systems still face a number of problems usually related to information overflow and recognizing questionable quality of submissions with reasonable time and effort allocation. This thesis focuses on idea assessment problem area and contributes a number of solutions that allow to filter, compare and evaluate ideas submitted into an Idea Management System. With respect to Idea Management System interoperability the thesis proposes theoretical model of Idea Life Cycle and formalizes it as the Gi2MO ontology which enables to go beyond the boundaries of a single system to compare and assess innovation in an organization wide or market wide context. Furthermore, based on the ontology, the thesis builds a number of solutions for improving idea assessment via: community opinion analysis (MARL), annotation of idea characteristics (Gi2MO Types) and study of idea relationships (Gi2MO Links). The main achievements of the thesis are: application of theoretical innovation models for practice of Idea Management to successfully recognize the differentiation between communities, opinion metrics and their recognition as a new tool for idea assessment, discovery of new relationship types between ideas and their impact on idea clustering. Finally, the thesis outcome is establishment of Gi2MO Project that serves as an incubator for Idea Management solutions and mature open-source software alternatives for the widely available commercial suites. From the academic point of view the project delivers resources to undertake experiments in the Idea Management Systems area and managed to become a forum that gathered a number of academic and industrial partners. Resumen Los Sistemas de Gestión de Ideas son aplicaciones Web que implementan el concepto de innovación abierta con técnicas de crowdsourcing. Típicamente, las organizaciones utilizan ese tipo de sistemas para conectar con comunidades grandes y así recoger ideas sobre cómo mejorar productos o servicios. Los Sistemas de Gestión de Ideas lian avanzado más allá de recoger simplemente ideas de buzones de sugerencias y ahora aspiran ser una solución de gestión de conocimiento capaz de seleccionar las mejores ideas por medio de técnicas colaborativas, así como métodos de evaluación llevados a cabo por expertos. Sin embargo, en la práctica, los sistemas contemporáneos todavía se enfrentan a una serie de problemas, que, por lo general, están relacionados con la sobrecarga de información y el reconocimiento de las ideas de dudosa calidad con la asignación de un tiempo y un esfuerzo razonables. Esta tesis se centra en el área de la evaluación de ideas y aporta una serie de soluciones que permiten filtrar, comparar y evaluar las ideas publicadas en un Sistema de Gestión de Ideas. Con respecto a la interoperabilidad de los Sistemas de Gestión de Ideas, la tesis propone un modelo teórico del Ciclo de Vida de la Idea y lo formaliza como la ontología Gi2MO que permite ir más allá de los límites de un sistema único para comparar y evaluar la innovación en un contexto amplio dentro de cualquier organización o mercado. Por otra parte, basado en la ontología, la tesis desarrolla una serie de soluciones para mejorar la evaluación de las ideas a través de: análisis de las opiniones de la comunidad (MARL), la anotación de las características de las ideas (Gi2MO Types) y el estudio de las relaciones de las ideas (Gi2MO Links). Los logros principales de la tesis son: la aplicación de los modelos teóricos de innovación para la práctica de Sistemas de Gestión de Ideas para reconocer las diferenciasentre comu¬nidades, métricas de opiniones de comunidad y su reconocimiento como una nueva herramienta para la evaluación de ideas, el descubrimiento de nuevos tipos de relaciones entre ideas y su impacto en la agrupación de estas. Por último, el resultado de tesis es el establecimiento de proyecto Gi2MO que sirve como incubadora de soluciones para Gestión de Ideas y herramientas de código abierto ya maduras como alternativas a otros sistemas comerciales. Desde el punto de vista académico, el proyecto ha provisto de recursos a ciertos experimentos en el área de Sistemas de Gestión de Ideas y logró convertirse en un foro que reunión para un número de socios tanto académicos como industriales.
Resumo:
Because poor quality semantic metadata can destroy the effectiveness of semantic web technology by hampering applications from producing accurate results, it is important to have frameworks that support their evaluation. However, there is no such framework developedto date. In this context, we proposed i) an evaluation reference model, SemRef, which sketches some fundamental principles for evaluating semantic metadata, and ii) an evaluation framework, SemEval, which provides a set of instruments to support the detection of quality problems and the collection of quality metrics for these problems. A preliminary case study of SemEval shows encouraging results.
Resumo:
In this paper we discuss the temporal aspects of indexing and classification in information systems. Basing this discussion off of the three sources of research of scheme change: of indexing: (1) analytical research on the types of scheme change and (2) empirical data on scheme change in systems and (3) evidence of cataloguer decision-making in the context of scheme change. From this general discussion we propose two constructs along which we might craft metrics to measure scheme change: collocative integrity and semantic gravity. The paper closes with a discussion of these constructs.
Resumo:
Through media such as newspapers, letterbox flyers, corporate brochures and television we are regularly confronted with descriptions for conventional (bricks 'n' mortar style) services. These representations vary in the terminology utilised, the depth of the description, the aspects of the service that are characterised and their applicability to candidate service requestors. Existing service catalogues (such as the Yellow Pages) provide little relief for service requestors from the burdensome task of discovering, comparing and substituting services. Add to this environment the rapidly evolving area of web services with its associated surfeit of standards, and the result is a considerably fragmented approach to the description of services. It leaves the reality of the Semantic Web somewhat clouded. --------- Let's consider service description briefly, before discussing our concerns with existing approaches to description. The act of describing is performed prior to advertising. This simple fact provides an interesting paradox as services cannot be described exactly before advertisement. This doesn't mean they can't be described comprehensively. By "exactly", we are referring to the fact that context provided by a service requestor (and their service needs) will alter the description of the service that is presented to the discoverer. For example, a service provider who operates a cinema wants to describe the price of their service. Let's say the advertised price is $15. They also want to state that a pensioner discount and a student discount is available which provides a 50% discount. A customer (i.e. service requestor) uses the cinema web site to purchase tickets online. They find the movie of their choice at a time that suits. However, its not until some context is provided by the requestor that the exact price is determined. The requestor might state that they are a pensioner. The same is applicable for a service requestor who purchases multiple tickets perhaps on behalf of other people. The disconnect between when the service is described and when a requestor provides context introduces challenges to the description process. A service provider would be ill-advised to offer independent descriptions that represent all the permutations possible for a single service. The descriptive effort would be prohibitive.
Resumo:
With the advent of Service Oriented Architecture, Web Services have gained tremendous popularity. Due to the availability of a large number of Web services, finding an appropriate Web service according to the requirement of the user is a challenge. This warrants the need to establish an effective and reliable process of Web service discovery. A considerable body of research has emerged to develop methods to improve the accuracy of Web service discovery to match the best service. The process of Web service discovery results in suggesting many individual services that partially fulfil the user’s interest. By considering the semantic relationships of words used in describing the services as well as the use of input and output parameters can lead to accurate Web service discovery. Appropriate linking of individual matched services should fully satisfy the requirements which the user is looking for. This research proposes to integrate a semantic model and a data mining technique to enhance the accuracy of Web service discovery. A novel three-phase Web service discovery methodology has been proposed. The first phase performs match-making to find semantically similar Web services for a user query. In order to perform semantic analysis on the content present in the Web service description language document, the support-based latent semantic kernel is constructed using an innovative concept of binning and merging on the large quantity of text documents covering diverse areas of domain of knowledge. The use of a generic latent semantic kernel constructed with a large number of terms helps to find the hidden meaning of the query terms which otherwise could not be found. Sometimes a single Web service is unable to fully satisfy the requirement of the user. In such cases, a composition of multiple inter-related Web services is presented to the user. The task of checking the possibility of linking multiple Web services is done in the second phase. Once the feasibility of linking Web services is checked, the objective is to provide the user with the best composition of Web services. In the link analysis phase, the Web services are modelled as nodes of a graph and an allpair shortest-path algorithm is applied to find the optimum path at the minimum cost for traversal. The third phase which is the system integration, integrates the results from the preceding two phases by using an original fusion algorithm in the fusion engine. Finally, the recommendation engine which is an integral part of the system integration phase makes the final recommendations including individual and composite Web services to the user. In order to evaluate the performance of the proposed method, extensive experimentation has been performed. Results of the proposed support-based semantic kernel method of Web service discovery are compared with the results of the standard keyword-based information-retrieval method and a clustering-based machine-learning method of Web service discovery. The proposed method outperforms both information-retrieval and machine-learning based methods. Experimental results and statistical analysis also show that the best Web services compositions are obtained by considering 10 to 15 Web services that are found in phase-I for linking. Empirical results also ascertain that the fusion engine boosts the accuracy of Web service discovery by combining the inputs from both the semantic analysis (phase-I) and the link analysis (phase-II) in a systematic fashion. Overall, the accuracy of Web service discovery with the proposed method shows a significant improvement over traditional discovery methods.
Resumo:
Measuring social and environmental metrics of property is necessary for meaningful triple bottom line (TBL) assessments. This paper demonstrates how relevant indicators derived from environmental rating systems provide for reasonably straightforward collations of performance scores that support adjustments based on a sliding scale. It also highlights the absence of a corresponding consensus of important social metrics representing the third leg of the TBL tripod. Assessing TBL may be unavoidably imprecise, but if valuers and managers continue to ignore TBL concerns, their assessments may soon be less relevant given the emerging institutional milieu informing and reflecting business practices and society expectations.
Resumo:
The challenges of maintaining a building such as the Sydney Opera House are immense and are dependent upon a vast array of information. The value of information can be enhanced by its currency, accessibility and the ability to correlate data sets (integration of information sources). A building information model correlated to various information sources related to the facility is used as definition for a digital facility model. Such a digital facility model would give transparent and an integrated access to an array of datasets and obviously would support Facility Management processes. In order to construct such a digital facility model, two state-of-the-art Information and Communication technologies are considered: an internationally standardized building information model called the Industry Foundation Classes (IFC) and a variety of advanced communication and integration technologies often referred to as the Semantic Web such as the Resource Description Framework (RDF) and the Web Ontology Language (OWL). This paper reports on some technical aspects for developing a digital facility model focusing on Sydney Opera House. The proposed digital facility model enables IFC data to participate in an ontology driven, service-oriented software environment. A proof-of-concept prototype has been developed demonstrating the usability of IFC information to collaborate with Sydney Opera House’s specific data sources using semantic web ontologies.