959 resultados para Self-healing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper shows how multiple interconnected microgrids can operate in autonomous mode in a self–healing medium voltage network. This is possible if based on network self– healing capability, the neighbour microgrids are interconnected and a surplus generation capacity is available in some of the Distributed Energy Resources (DERs) of the interconnected microgrids. This will reduce or prevent load shedding within the microgrids with less generation capacity. Therefore, DERs in a microgrid are controlled such that they share the local load within that microgrid as well as the loads in other interconnected microgrids. Different control algorithms are proposed to manage the DERs at different operating conditions. On the other hand, a Distribution Static Compensator (DSTATCOM) is employed to regulate the voltage. The efficacy of the proposed power control, sharing and management among DERs in multiple interconnected microgrids is validated through extensive simulation studies using PSCAD/EMTDC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To minimise the number of load sheddings in a microgrid (MG) during autonomous operation, islanded neighbour MGs can be interconnected if they are on a self-healing network and an extra generation capacity is available in the distributed energy resources (DER) of one of the MGs. In this way, the total load in the system of interconnected MGs can be shared by all the DERs within those MGs. However, for this purpose, carefully designed self-healing and supply restoration control algorithm, protection systems and communication infrastructure are required at the network and MG levels. In this study, first, a hierarchical control structure is discussed for interconnecting the neighbour autonomous MGs where the introduced primary control level is the main focus of this study. Through the developed primary control level, this study demonstrates how the parallel DERs in the system of multiple interconnected autonomous MGs can properly share the load of the system. This controller is designed such that the converter-interfaced DERs operate in a voltage-controlled mode following a decentralised power sharing algorithm based on droop control. DER converters are controlled based on a per-phase technique instead of a conventional direct-quadratic transformation technique. In addition, linear quadratic regulator-based state feedback controllers, which are more stable than conventional proportional integrator controllers, are utilised to prevent instability and weak dynamic performances of the DERs when autonomous MGs are interconnected. The efficacy of the primary control level of the DERs in the system of multiple interconnected autonomous MGs is validated through the PSCAD/EMTDC simulations considering detailed dynamic models of DERs and converters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to minimize the number of load shedding in a Microgrid during autonomous operation, islanded neighbour microgrids can be interconnected if they are on a self-healing network and an extra generation capacity is available in Distributed Energy Resources (DER) in one of the microgrids. In this way, the total load in the system of interconnected microgrids can be shared by all the DERs within these microgrids. However, for this purpose, carefully designed self-healing and supply restoration control algorithm, protection systems and communication infrastructure are required at the network and microgrid levels. In this chapter, first a hierarchical control structure is discussed for interconnecting the neighbour autonomous microgrids where the introduced primary control level is the main focus. Through the developed primary control level, it demonstrates how the parallel DERs in the system of multiple interconnected autonomous microgrids can properly share the load in the system. This controller is designed such that the converter-interfaced DERs operate in a voltage-controlled mode following a decentralized power sharing algorithm based on droop control. The switching in the converters is controlled using a linear quadratic regulator based state feedback which is more stable than conventional proportional integrator controllers and this prevents instability among parallel DERs when two microgrids are interconnected. The efficacy of the primary control level of DERs in the system of multiple interconnected autonomous microgrids is validated through simulations considering detailed dynamic models of DERs and converters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an attempt to generate supramolecular assemblies able to function as self-healing hydrogels, a novel ureido-pyrimidinone (UPy) monomer, 2-(N ′-methacryloyloxyethylureido)-6-(1-adamantyl)-4[1H]-pyrimidinone, was synthesized and then copolymerized with N,N-dimethylacrylamide at four different feed compositions, using a solution of lithium chloride in N,N-dimethylacetamide as the polymerization medium. The assembling process in the resulting copolymers is based on crosslinking through the reversible quadruple hydrogen bonding between side-chain UPy modules. The adamantyl substituent was introduced in order to create a “hydrophobic pocket” that may protect the hydrogen bonds against the disruptive effect of water molecules. Upon hydration to equilibrium, all copolymers generated typical hydrogels when their concentration in the hydrated system was at least 15%. The small-deformation rheometry showed that all hydrated copolymers were hydrogels that maintained a solid-like behavior, and that their extrusion through a syringe needle did not affect significantly this behavior, suggesting a self-healing capacity in these materials. An application as injectable substitutes for the eye's vitreous humor was proposed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Shape Memory Alloy (SMA) wire reinforced composite shell structure is analyzed for self-healing characteristic using Variational Asymptotic Method (VAM). SMA behavior is modeled using a onedimensional constitutive model. A pre-notched specimen is loaded longitudinally to simulate crack propagation. The loading process is accompanied by martensitic phase transformation in pre-strained SMA wires, bridging the crack. To heal the composite, uniform heating is required to initiate reverse transformation in the wires and bringing the crack faces back into contact. The pre-strain in the SMA wires used for reinforcement, causes a closure force across the crack during reverse transformation of the wires under heating. The simulation can be useful in design of self-healing composite structures using SMA. Effect of various parameters, like composite and SMA material properties and the geometry of the specimen, on the cracking and self-healing can also be studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An easy access to a library of simple organic salts derived from tert-butoxycarbonyl (Boc)-protected L-amino acids and two secondary amines (dicyclohexyl- and dibenzyl amine) are synthesized following a supramolecular synthon rationale to generate a new series of low molecular weight gelators (LMWGs). Out of the 12 salts that we prepared, the nitrobenzene gel of dicyclohexylammonium Boc-glycinate (GLY.1) displayed remarkable load-bearing, moldable and self-healing properties. These remarkable properties displayed by GLY.1 and the inability to display such properties by its dibenzylammonium counterpart (GLY.2) were explained using microscopic and rheological data. Single crystal structures of eight salts displayed the presence of a 1D hydrogen-bonded network (HBN) that is believed to be important in gelation. Powder X-ray diffraction in combination with the single crystal X-ray structure of GLY.1 clearly established the presence of a 1D hydrogen-bonded network in the xerogel of the nitrobenzene gel of GLY.1. The fact that such remarkable properties arising from an easily accessible (salt formation) small molecule are due to supramolecular (non-covalent) interactions is quite intriguing and such easily synthesizable materials may be useful in stress-bearing and other applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-component super-hydrogelation triggered by the acid-base interaction of a L-histidine appended pyrenyl derivative (PyHis) and phthalic acid (PA) was reported. The use of isomeric isophthalic or terephthalic acid or other comparable acids in place of PA does not lead to salt formation and therefore hydrogelation is not observed. Excimer formation of the pyrenyl unit has not been detected although the PyHis : PA = 1: 1 system undergoes extensive self-assembly in aqueous solution. The synergistic effect of intermolecular H-bonding forces, pi-pi stacking, electrostatic interactions, etc. is found to be responsible for robust hydrogel formation. Development of chiral supramotecular assemblies has been verified through circular dichroism spectroscopy. Morphological investigations involving the PyHis : PA = 1: 1 system show vesicular nano-structures with a definite bilayer width at relatively low concentrations. The latter fuses to construct coiled-coil left-handed helical fibers upon increase in the concentrations of the gelators. The intertwining of the resultant helical fibers eventually results in hydrogel formation. The probable bilayer packing in the self-assembled structures has been probed using X-ray diffraction (XRD) studies and lanthanide sensitization, which suggests that the polar imidazolium hydrogen phthalate unit of the gelator forms the head group and faces the hydrophilic water environment while the hydrophobic pyrenyl units sit inside the hydrophobic core of the bilayer. The hydrogel exhibits multi-stimuli responsiveness including thixotropic behavior. In addition, shape-persistent as well as rapid self-healing behaviour of the hydrogel was established. Furthermore load-bearing characteristics of the hydrogel have also been demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the circuit board integration of a self-healing mechanism to repair open faults. The electric field driven mechanism physically restores fractured interconnects in electronic circuits and has the ability to solve mazes. The repair is performed by conductive particles dispersed in an insulating fluid. We demonstrate the integration of the healing module onto printed circuit boards and the ability of maze solving. We model and perform experiments on the influence of the geometry of conductive particles as well as the terminal impedances of the route on the healing efficiency. The typical heal rate is 10 mu m/s with healed route having mean resistance of 8 k Omega across a 200 micron gap and depending on the materials and concentrations used. (C) 2015 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With continuing advances in CMOS technology, feature sizes of modern Silicon chip-sets have gone down drastically over the past decade. In addition to desktops and laptop processors, a vast majority of these chips are also being deployed in mobile communication devices like smart-phones and tablets, where multiple radio-frequency integrated circuits (RFICs) must be integrated into one device to cater to a wide variety of applications such as Wi-Fi, Bluetooth, NFC, wireless charging, etc. While a small feature size enables higher integration levels leading to billions of transistors co-existing on a single chip, it also makes these Silicon ICs more susceptible to variations. A part of these variations can be attributed to the manufacturing process itself, particularly due to the stringent dimensional tolerances associated with the lithographic steps in modern processes. Additionally, RF or millimeter-wave communication chip-sets are subject to another type of variation caused by dynamic changes in the operating environment. Another bottleneck in the development of high performance RF/mm-wave Silicon ICs is the lack of accurate analog/high-frequency models in nanometer CMOS processes. This can be primarily attributed to the fact that most cutting edge processes are geared towards digital system implementation and as such there is little model-to-hardware correlation at RF frequencies.

All these issues have significantly degraded yield of high performance mm-wave and RF CMOS systems which often require multiple trial-and-error based Silicon validations, thereby incurring additional production costs. This dissertation proposes a low overhead technique which attempts to counter the detrimental effects of these variations, thereby improving both performance and yield of chips post fabrication in a systematic way. The key idea behind this approach is to dynamically sense the performance of the system, identify when a problem has occurred, and then actuate it back to its desired performance level through an intelligent on-chip optimization algorithm. We term this technique as self-healing drawing inspiration from nature's own way of healing the body against adverse environmental effects. To effectively demonstrate the efficacy of self-healing in CMOS systems, several representative examples are designed, fabricated, and measured against a variety of operating conditions.

We demonstrate a high-power mm-wave segmented power mixer array based transmitter architecture that is capable of generating high-speed and non-constant envelope modulations at higher efficiencies compared to existing conventional designs. We then incorporate several sensors and actuators into the design and demonstrate closed-loop healing against a wide variety of non-ideal operating conditions. We also demonstrate fully-integrated self-healing in the context of another mm-wave power amplifier, where measurements were performed across several chips, showing significant improvements in performance as well as reduced variability in the presence of process variations and load impedance mismatch, as well as catastrophic transistor failure. Finally, on the receiver side, a closed-loop self-healing phase synthesis scheme is demonstrated in conjunction with a wide-band voltage controlled oscillator to generate phase shifter local oscillator (LO) signals for a phased array receiver. The system is shown to heal against non-idealities in the LO signal generation and distribution, significantly reducing phase errors across a wide range of frequencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In-situ deformation experiments were carried out in a transmission electron microscope to investigate the structural response of single crystal GaAs nanowires (NWs) under compression. A repeatable self-healing process was discovered in which a partially fractured GaAs NW restored its original single crystal structure immediately after an external compressive force was removed. Possible mechanisms of the self-healing process are discussed.