1000 resultados para Seismic action
Resumo:
The first part of this research work regards the assessment of the mathematical modelling of reinforced concrete columns confined with carbon fibre (CFRP) sheets under axial loading. The purpose was to evaluate existing analytical models, contribute to possible improvements and choose the best model(s) to be part of a new model for the prediction of the behaviour of confined columns under bending and compression. For circular columns, a wide group of authors have proposed several models specific for FRP-confined concrete. The analysis of some of the existing models was carried out by comparing these with several tested columns. Although several models predict fairly the peak load only few can properly estimate the load-strain and dilation behaviour of the columns. Square columns confined with CFRP show a more complex interpretation of their behaviour. Accordingly, the analysis of two experimental programs was carried out to propose new modelling equations for the whole behaviour of columns. The modelling results show that the analytical curves are in general agreement with the presented experimental curves for a wide range of dimensions. An analysis similar to the one done for circular columns was this turn carried out for square columns. Few models can fairly estimate the whole behaviour of the columns and with less accuracy at all levels when compared with circular columns. The second part of this study includes seven experimental tests carried out on reinforced concrete rectangular columns with rounded corners, different damage condition and with confinement and longitudinal strengthening systems. It was concluded that the use of CFRP confinement is viable and of effective performance enhancement alone and combined with other techniques, maintaining a good ductile behaviour for established threshold displacements. As regards the use of external longitudinal strengthening combined with CFRP confinement, this system is effective for the performance enhancement and viable in terms of execution. The load capacity was increased significantly, preserving also in this case a good ductile behaviour for threshold displacements. As to the numerical nonlinear modelling of the tested columns, the results show a variation of the peak load of 1% to 10% compared with tests results. The good results are partly due to the inclusion of the concrete constitutive model by Mander et al. modified by Faustino, Chastre & Paula taking into account the confinement effect. Despite the reasonable approximation to tests results, the modelling results showed higher unloading, which leads to an overestimate dissipated energy and residualdisplacement.
Resumo:
Under-deck cable-stayed bridges are very effective structural systems for which the strong contribution of the stay cables under live loading allows for the design of very slender decks for persistent and transient loading scenarios. Their behaviour when subjected to seismic excitation is investigated herein and a set of design criteria are presented that relate to the type and arrangement of bearings, the number and configuration of struts, and the transverse distribution of stay cables. The nonlinear behaviour of these bridges when subject to both near-field and far-field accelerograms has been thoroughly investigated through the use of incremental dynamic analyses. An intensity measure that reflects the pertinent contributions to response when several vibration modes are activated was proposed and is shown to be effective for the analysis of this structural type. The under-deck cable-stay system contributes in a very positive manner to reducing the response when the bridges are subject to very strong seismic excitation. For such scenarios, the reduction in the stiffness of the deck because of crack formation, when prestressed concrete decks are used, mobilises the cable system and enhances the overall performance of the system. Sets of natural accelerograms that are compliant with the prescriptions of Eurocode 8 were also applied to propose a set of design criteria for this bridge type in areas prone to earthquakes. Particular attention is given to outlining the optimal strategies for the deployment of bearings
Resumo:
The paper describes the main features of a Technical Recommendation first draft on Seismic Action on port structures promoted recently by the Spanish Ministry of Public Works (MOPT). Although much more research is needed to clarify the seismic behaviour of the vast class of problems present in port structures the current state of the art allows at least a classification of subjects and the establishment of minimum requirements to guide the design. Also the use of more refined methods for specially dangerous situations needs some general guidelines that contribute to mantein the design under reasonable safety margins. The Recommendations of the Spanish MOPT are a first try in those directions.
Resumo:
Integral Masonry System consisting of intersecting steel trusses alo ng each of the three dimensional directions of space on walls and slabs using any masonry material, had yet been backed up by the previous adobe test for seismic areas. This paper presents the comparison this last test and the adaptation of the IMS using h ollow brick. A prototype based on a two storey model house (6mx6mx6m) has being also built in two different scales in order to maximize the load and size of the shake table: the first one half size the whole building (3mx3mx3m) and the second, a quarter of the real size (3mx3mx6m). Both tests have suffered some mild to moderate damages while supporting the higher seismic action subjected by the shake table, without even fissuring the first test and with very few damages the second one. The thickness of the hollow brick wall and the diameter of the tree - dimensional truss reinforcement were scaled to the real size test in order to ascertain its great structural behaviour in relation to the previous structural model calculations. The aim of this study is to sum marize the results of the research collaboration between the ETSAM - UPM and the PUCP in whose laboratory these tests were carried out.
Resumo:
Aggregate masonry buildings have been generated over the years, allowing the interaction of different aggregated structural units under seismic action. The first part of this work is focused on the seismic vulnerability and fragility assessment of clay brick masonry buildings, sited in Bologna (Italy), with reference, at first, to single isolated structural units, by means of the Response Surface statistical method, taking into account some variabilities and uncertainties involved in the problem. The seismic action was defined by means of a group of selected registered accelerograms, in order to analyse the effect of the variability of the earthquakes. Identical and different structural units chosen by the Response Surface generated simulations are then aggregated in row, in order to compare the collapse PGA referred to the isolated structural unit and the one referred to the aggregate structure. The second part is focused on the seismic vulnerability and fragility assessment of stone masonry structures, sited in Seixal (Portugal), applying a methodology similar to that used for the buildings sited in Bologna. Since the availability of several information, the analyses involved the assessment of the most prevalent structural typologies in the area, considering the variability of a set of structural and geometrical parameters. The results highlighted the importance of the statistic procedures as method able to consider the variabilities and the uncertainties involved in the problem of the fragility of unreinforced masonry structures, in absence of accurate investigations on the structural typologies, as in the Seixal case study. Furthermore, it was showed that the structural units along the unreinforced clay brick or stone masonry aggregates cannot be analysed as isolated, as they are affected by the effect of the aggregation with adjacent structural units, according to the different directions of the seismic action considered and to their different position along the row aggregate.
Resumo:
Trabalho Final de Mestrado para a obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Edificações
Resumo:
Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Civil Área de Especialização em Estruturas
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Estruturas
Resumo:
Trabalho de Dissertação de Natureza Científica para obtenção do grau de Mestre em Engenharia Civil
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Civil - Ramo de Estruturas
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização em Estruturas
Resumo:
Trabalho final de Mestrado para a obtenção do grau de mestre em Engenharia Civil
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Estruturas
Resumo:
O objetivo deste trabalho consiste em efetuar o dimensionamento estrutural de um edifício em betão armado, contemplando as diferentes fases, desde a conceção inicial, com a definição do modelo estrutural e escolha criteriosa dos elementos e soluções constituintes, até à fase final de dimensionamento, considerando para além das cargas gravíticas, a ação do vento e a ação sísmica. No âmbito deste trabalho considerou-se o dimensionamento de elementos estruturais nomeadamente, sapatas, paredes, pilares, vigas e lajes, com a verificação de segurança à flexão simples, flexão composta, esforço transverso e punçoamento, consoante a necessidade de cada elemento. Para tal, foi desenvolvido uma folha de cálculo automático (Macro) que permite a verificação da capacidade resistente de secções, à flexão simples e ao esforço transverso, quer em elementos com ou sem armadura de esforço transverso. Os esforços atuantes que estiveram na origem das verificações estruturais foram calculados com base na aplicação de um programa tridimensional de elementos finitos, nomeadamente o programa de cálculo ROBOT STRUCTURAL ANALYSIS. Os Critérios Gerais de Dimensionamento considerados, com base na regulamentação em vigor em Portugal – RSA, REBAP e Eurocódigos, bem como as Hipóteses de Cálculo consideradas na verificação aos estados limites últimos dos elementos estruturais são detalhadamente enunciados ao longo do trabalho. Os desenhos de elementos estruturais dimensionados, bem como os desenhos de dimensionamento do edifício encontram-se em Anexo.
Resumo:
The development of novel strengthening techniques to address the seismic vulnerability of masonry elements is gradually leading to simpler, faster and more effective strengthening strategies. In particular, the use of fabric reinforced cementitious matrix systems is considered of great potential, given the increase of ductility achieved with simple and economic strengthening procedures. To assess the effectiveness of these strengthening systems, and considering that the seismic action is involved, one important component of the structural behaviour is the in-plane cyclic response. In this work is discussed the applicability of the diagonal tensile test for the assessment of the cyclic response of strengthened masonry. The results obtained allowed to assess the contribution of the strengthening system to the increase of the load carrying capacity of masonry elements, as well as to evaluate the damage evolution and the stiffness degradation mechanisms developing under cyclic loading.